Suppr超能文献

基于聚合物的密集流体网络,用于高通量筛选和超灵敏荧光检测。

Polymer-based dense fluidic networks for high throughput screening with ultrasensitive fluorescence detection.

机构信息

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.

出版信息

Electrophoresis. 2010 Sep;31(18):3074-82. doi: 10.1002/elps.201000209.

Abstract

Microfluidics represents a viable platform for performing high throughput screening (HTS) because of its ability to automate fluid handling and generate fluidic networks with high number densities over small footprints appropriate for the simultaneous optical interrogation of many screening assays. While most HTS campaigns depend on fluorescence, readers typically use point detection and serially address the assay results significantly lowering throughput or detection sensitivity due to a low duty cycle. To address this challenge, we present here the fabrication of a high-density microfluidic network packed into the imaging area of a large field-of-view (FoV) ultrasensitive fluorescence detection system. The fluidic channels were 1, 5 or 10 μm (width), 1 μm (depth) with a pitch of 1-10 μm and each fluidic processor was individually addressable. The fluidic chip was produced from a molding tool using hot embossing and thermal fusion bonding to enclose the fluidic channels. A 40× microscope objective (numerical aperture=0.75) created an FoV of 200 μm, providing the ability to interrogate ∼25 channels using the current fluidic configuration. An ultrasensitive fluorescence detection system with a large FoV was used to transduce fluorescence signals simultaneously from each fluidic processor onto the active area of an electron multiplying charge-coupled device. The utility of these multichannel networks for HTS was demonstrated by carrying out the high throughput monitoring of the activity of an enzyme, apurinic Endonuclease 1, used as a model-screening assay.

摘要

微流控技术因其能够自动化流体处理并在小面积上生成具有高密度的流体网络,非常适合同时对多个筛选检测进行光学检测,因此成为进行高通量筛选(HTS)的可行平台。虽然大多数 HTS 实验依赖于荧光,但读取器通常使用点检测并串行处理检测结果,由于低占空比,这会显著降低通量或检测灵敏度。为了解决这一挑战,我们在此提出了一种将高密度微流控网络集成到大视场(FoV)超灵敏荧光检测系统成像区域中的方法。流体通道的宽度为 1、5 或 10 μm,深度为 1 μm,间距为 1-10 μm,每个流体处理器都可以单独寻址。该流体芯片由热压印和热融合键合制成的注塑工具生产,以封闭流体通道。一个 40×显微镜物镜(数值孔径=0.75)创建了一个 200 μm 的 FoV,能够使用当前的流体配置来检测约 25 个通道。使用具有大 FoV 的超灵敏荧光检测系统,从每个流体处理器将荧光信号同时传输到电子倍增电荷耦合器件的有效区域。通过高通量监测作为模型筛选检测的脱嘌呤内切酶 1 的活性,展示了这些多通道网络在 HTS 中的应用。

相似文献

3
High-Throughput Enzyme Kinetics with 3D Microfluidics and Imaging SAMDI Mass Spectrometry.
Anal Chem. 2018 Nov 6;90(21):13096-13103. doi: 10.1021/acs.analchem.8b04391. Epub 2018 Oct 10.
4
Paper-based SlipPAD for high-throughput chemical sensing.
Anal Chem. 2013 May 7;85(9):4263-7. doi: 10.1021/ac4008623. Epub 2013 Apr 15.
5
High throughput single molecule detection for monitoring biochemical reactions.
Analyst. 2009 Jan;134(1):97-106. doi: 10.1039/b816383a. Epub 2008 Nov 24.
7
Fluorescence spectrometer-on-a-fluidic-chip.
Lab Chip. 2007 May;7(5):626-9. doi: 10.1039/b618879f. Epub 2007 Mar 27.
9
High-throughput protein expression generator using a microfluidic platform.
J Vis Exp. 2012 Aug 23(66):e3849. doi: 10.3791/3849.
10
Reconfigurable microfluidic dilution for high-throughput quantitative assays.
Lab Chip. 2015 Jun 21;15(12):2670-9. doi: 10.1039/c5lc00432b.

引用本文的文献

本文引用的文献

1
The future of microfluidic assays in drug development.
Expert Opin Drug Discov. 2008 Oct;3(10):1237-53. doi: 10.1517/17460441.3.10.1237.
2
Capillary microfluidic electrophoretic mobility shift assays: application to enzymatic assays in drug discovery.
Expert Opin Drug Discov. 2010 Jan;5(1):51-63. doi: 10.1517/17460440903493431.
3
High throughput single molecule detection for monitoring biochemical reactions.
Analyst. 2009 Jan;134(1):97-106. doi: 10.1039/b816383a. Epub 2008 Nov 24.
4
Micro total analysis systems: latest achievements.
Anal Chem. 2008 Jun 15;80(12):4403-19. doi: 10.1021/ac800680j. Epub 2008 May 23.
5
Cell-based high content screening using an integrated microfluidic device.
Lab Chip. 2007 Dec;7(12):1696-704. doi: 10.1039/b711513j. Epub 2007 Oct 8.
6
Microfluidic large-scale integration: the evolution of design rules for biological automation.
Annu Rev Biophys Biomol Struct. 2007;36:213-31. doi: 10.1146/annurev.biophys.36.040306.132646.
7
A systems approach to measuring the binding energy landscapes of transcription factors.
Science. 2007 Jan 12;315(5809):233-7. doi: 10.1126/science.1131007.
8
Multiphase microfluidics: from flow characteristics to chemical and materials synthesis.
Lab Chip. 2006 Dec;6(12):1487-503. doi: 10.1039/b609851g. Epub 2006 Sep 27.
9
Integrated microfluidics for parallel screening of an in situ click chemistry library.
Angew Chem Int Ed Engl. 2006 Aug 11;45(32):5276-81. doi: 10.1002/anie.200601677.
10
Microfluidics-based systems biology.
Mol Biosyst. 2006 Feb;2(2):97-112. doi: 10.1039/b515632g. Epub 2006 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验