Suppr超能文献

在纤维状环境中对胶原蛋白蛋白质进行原子建模。

Atomistic modeling of collagen proteins in their fibrillar environment.

机构信息

Department of Chemistry, University College London, 20 Gordon Street, London, United Kingdom WC1H 0AJ.

出版信息

J Phys Chem B. 2010 Oct 21;114(41):13263-70. doi: 10.1021/jp1059984.

Abstract

Molecular dynamics simulations can aid studies of the structural and physicochemical properties of proteins, by predicting their dynamics, energetics, and interactions with their local environment at the atomistic level. We argue that nonstandard protocols are needed to realistically model collagen proteins, which in their biological state aggregate to form collagen fibrils, and so should not be treated as fully solvated molecules. A new modeling approach is presented that can account for the local environment of collagen molecules within a fibril and which therefore simulates aspects of their behavior that would not otherwise be distinguished. This modeling approach exploits periodic boundaries to replicate the supermolecular arrangement of collagen proteins within the fibril, in an approach that is more commonly associated with modeling crystalline solids rather than mesoscopic protein aggregates. Initial simulations show agreement with experimental observations and corroborate theories of the fibril's structure.

摘要

分子动力学模拟可以通过预测蛋白质的动力学、能量学以及它们与局部环境的原子间相互作用,来辅助研究蛋白质的结构和物理化学性质。我们认为,需要采用非标准方案来真实地模拟胶原蛋白,因为在其生物状态下,胶原蛋白会聚集形成胶原蛋白纤维,因此不应将其视为完全溶解的分子。我们提出了一种新的建模方法,可以模拟纤维内胶原蛋白分子的局部环境,从而模拟其行为的某些方面,而这些方面在其他情况下可能无法区分。这种建模方法利用周期性边界条件来复制纤维内胶原蛋白的超分子排列,这种方法通常与晶体固体的建模而非介观蛋白质聚集相关联。初步的模拟结果与实验观察结果一致,并证实了纤维结构的理论。

相似文献

1
Atomistic modeling of collagen proteins in their fibrillar environment.
J Phys Chem B. 2010 Oct 21;114(41):13263-70. doi: 10.1021/jp1059984.
2
A molecular dynamics study of the interprotein interactions in collagen fibrils.
Soft Matter. 2011 Apr 7;7(7):3373-3382. doi: 10.1039/C0SM01192D.
3
The collagen fibril: the almost crystalline structure.
J Struct Biol. 1998;122(1-2):111-8. doi: 10.1006/jsbi.1998.3976.
4
Contrasting Local and Macroscopic Effects of Collagen Hydroxylation.
Int J Mol Sci. 2021 Aug 23;22(16):9068. doi: 10.3390/ijms22169068.
5
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
6
Collagen Structure-Function Relationships from Solid-State NMR Spectroscopy.
Acc Chem Res. 2018 Jul 17;51(7):1621-1629. doi: 10.1021/acs.accounts.8b00092. Epub 2018 Jun 22.
7
Understanding Self-Assembly and Molecular Packing in Methylcellulose Aqueous Solutions Using Multiscale Modeling and Simulations.
Biomacromolecules. 2024 Mar 11;25(3):1682-1695. doi: 10.1021/acs.biomac.3c01209. Epub 2024 Feb 28.
8
Heterogeneous Structure and Dynamics of Water in a Hydrated Collagen Microfibril.
Biomacromolecules. 2024 Aug 12;25(8):4809-4818. doi: 10.1021/acs.biomac.4c00183. Epub 2024 Jul 8.
9
Nanomechanical mapping of single collagen fibrils under tension.
Nanoscale. 2019 Aug 1;11(30):14417-14425. doi: 10.1039/c9nr02644d.
10
Designed to fail: a novel mode of collagen fibril disruption and its relevance to tissue toughness.
Biophys J. 2012 Jun 20;102(12):2876-84. doi: 10.1016/j.bpj.2012.05.022. Epub 2012 Jun 19.

引用本文的文献

1
ColBuilder: flexible structure generation of crosslinked collagen fibrils.
Bioinformatics. 2025 Jun 2;41(6). doi: 10.1093/bioinformatics/btaf278.
2
Collagen Structured Hydration.
Biomolecules. 2023 Dec 4;13(12):1744. doi: 10.3390/biom13121744.
3
Dipolar Relaxation of Water Protons in the Vicinity of a Collagen-like Peptide.
J Phys Chem B. 2022 Apr 7;126(13):2538-2551. doi: 10.1021/acs.jpcb.2c00052. Epub 2022 Mar 26.
5
A computational study of mechanical properties of collagen-based bio-composites.
Int Biomech. 2020 Dec;7(1):76-87. doi: 10.1080/23335432.2020.1812428.
6
Modeling Fibrillogenesis of Collagen-Mimetic Molecules.
Biophys J. 2020 Nov 3;119(9):1791-1799. doi: 10.1016/j.bpj.2020.09.013. Epub 2020 Sep 23.
7
Contribution of biomimetic collagen-ligand interaction to intrafibrillar mineralization.
Sci Adv. 2019 Mar 29;5(3):eaav9075. doi: 10.1126/sciadv.aav9075. eCollection 2019 Mar.

本文引用的文献

1
Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules.
J Mech Behav Biomed Mater. 2009 Apr;2(2):130-7. doi: 10.1016/j.jmbbm.2008.03.001. Epub 2008 Mar 14.
2
Collagen tissue engineering: development of novel biomaterials and applications.
Pediatr Res. 2008 May;63(5):492-6. doi: 10.1203/PDR.0b013e31816c5bc3.
3
Role of length-dependent stability of collagen-like peptides.
J Phys Chem B. 2008 Feb 7;112(5):1533-9. doi: 10.1021/jp0728297. Epub 2008 Jan 11.
4
Effect of the structural water on the mechanical properties of collagen-like microfibrils: a molecular dynamics Study.
Ann Biomed Eng. 2007 Jul;35(7):1216-30. doi: 10.1007/s10439-007-9296-8. Epub 2007 Mar 27.
5
Molecular basis of organization of collagen fibrils.
J Struct Biol. 2007 Feb;157(2):297-307. doi: 10.1016/j.jsb.2006.10.009. Epub 2006 Oct 21.
7
Toward the supramolecular structure of collagen: a molecular dynamics approach.
J Phys Chem B. 2005 Jun 9;109(22):11389-98. doi: 10.1021/jp0440941.
8
Microfibrillar structure of type I collagen in situ.
Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9001-5. doi: 10.1073/pnas.0502718103. Epub 2006 Jun 2.
9
Molecular dynamics study of onset of water gelation around the collagen triple helix.
Proteins. 2006 Aug 15;64(3):711-8. doi: 10.1002/prot.21019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验