Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.
Nanoscale. 2019 Aug 1;11(30):14417-14425. doi: 10.1039/c9nr02644d.
At the most fundamental level, collagen fibrils are rope-like structures assembled from triple-helical collagen molecules. One key structural characteristic of the fibril is the 67 nm D-band pattern arising from the quarter-stagger packing of the molecules. Our current understanding of the structural changes induced by tensile loading of collagen fibrils comes mostly from atomistic molecular dynamics simulations and tissue level experiments. Tensile testing of individual fibrils is an upcoming field of investigation, and thus far structural analysis has always taken place after the fibrils have been ruptured or strained and subsequently dried. There is therefore a gap in understanding how the structure of collagen fibrils transforms under tension, and how this reorganization affects the functionality of collagen fibrils within tissues. In this study, atomic force microscopy based nanomechanical mapping is introduced to image hydrated collagen fibrils absorbed to an elastic substrate. Upon stretching the substrate between 5 and 30%, we observe a radial stiffening consistent with the fibrils being under tension. This is associated with an increase in D-band length. In addition the indentation modulus contrast associated with the D-band pattern increases linearly with D-band strain. These results provide direct confirmation of, and new information on the axially inhomogeneous structural response of collagen fibrils to applied tension as previously proposed on the basis of X-ray scattering experiments on stretched tissues. Furthermore our approach opens the road for studying the structural impacts of tension on cell-matrix interactions at the molecular level.
在最基本的层面上,胶原原纤维是由三螺旋胶原分子组装而成的绳状结构。原纤维的一个关键结构特征是由于分子的四分之一交错堆积而产生的 67nm D 带模式。我们目前对胶原原纤维拉伸载荷引起的结构变化的理解主要来自原子分子动力学模拟和组织水平实验。对单个原纤维的拉伸测试是一个正在兴起的研究领域,到目前为止,结构分析总是在原纤维断裂或应变以及随后干燥之后进行。因此,对于胶原原纤维在张力下的结构如何转变,以及这种重组如何影响组织中原纤维的功能,我们的理解存在差距。在这项研究中,引入了基于原子力显微镜的纳米力学映射来对吸收在弹性基底上的水合胶原原纤维进行成像。在将基底拉伸 5%至 30%的过程中,我们观察到与原纤维受张力一致的径向变硬。这与 D 带长度的增加有关。此外,与 D 带图案相关的压痕模量对比度随 D 带应变呈线性增加。这些结果直接证实了以前基于拉伸组织的 X 射线散射实验提出的胶原原纤维对施加张力的轴向不均匀结构响应,并提供了新的信息。此外,我们的方法为研究张力对细胞-基质相互作用的结构影响开辟了道路,可在分子水平上进行研究。