Institute of Neuroscience and Medicine-Neuromodulation (INM-7), Research Center Jülich, D-52425 Jülich, Germany.
Prog Biophys Mol Biol. 2011 Mar;105(1-2):98-108. doi: 10.1016/j.pbiomolbio.2010.09.018. Epub 2010 Sep 27.
Large-amplitude oscillations of macroscopic neuronal signals, such as local field potentials and electroencephalography or magnetoencephalography signals, are commonly considered as being generated by a population of mutually synchronized neurons. In a computational study in generic networks of phase oscillators and bursting neurons, however, we show that this common belief may be wrong if the neuronal population receives an external rhythmic input. The latter may stem from another neuronal population or an external, e.g., sensory or electrical, source. In that case the population field potential may be entrained by the rhythmic input, whereas the individual neurons are phase desynchronized both mutually and with their field potential. Intriguingly, the corresponding large-amplitude oscillations of the population mean field are generated by pairwise desynchronized neurons oscillating at frequencies shifted far away from the frequency of the macroscopic field potential.
宏观神经元信号(如局部场电位和脑电图或脑磁图信号)的大幅震荡通常被认为是由相互同步的神经元群体产生的。然而,在一个通用的相振荡器和爆发神经元网络的计算研究中,我们表明,如果神经元群体接收到外部节律性输入,这种普遍的信念可能是错误的。后者可能来自另一个神经元群体或外部的,例如感官或电的,来源。在这种情况下,群体的场电位可能会被节律性输入所捕获,而单个神经元则与它们的场电位相互以及自身相位去同步。有趣的是,群体平均场的相应大幅震荡是由相互去同步的神经元产生的,这些神经元的振荡频率远远偏离了宏观场电位的频率。