Suppr超能文献

climbing fibers 诱导小脑浦肯野细胞中的 microRNA 转录。

Climbing fibers induce microRNA transcription in cerebellar Purkinje cells.

机构信息

Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.

出版信息

Neuroscience. 2010 Dec 15;171(3):655-65. doi: 10.1016/j.neuroscience.2010.09.039. Epub 2010 Sep 25.

Abstract

The coordinated expression of as many as 100 proteins may be required to sustain simple changes in synaptic transmission. While each protein may be regulated separately, the translation of multiple proteins could be regulated by microRNAs. MicroRNAs are short non-coding RNAs that translationally repress cognate sequences in targeted mRNAs. If these targeted sequences are shared across several genes, then a single microRNA could, effectively regulate the activity of several genes in parallel. Here we investigate whether microRNA transcription is influenced by naturally evoked synaptic activity at the climbing fiber-Purkinje cell synapse in the mouse cerebellar flocculus. Mice received 24 h of binocular horizontal optokinetic stimulation (HOKS) evoking sustained increases in climbing fiber activity to Purkinje cells in one flocculus and decreases to Purkinje cells in the other. Increased climbing fiber activity increased transcription of 12 microRNAs in the flocculus. The transcription of one of these microRNAs, miR335, was proportional to duration of stimulation, increasing 18-fold after 24 h of HOKS. We localized miR335 transcripts to Purkinje cells using hybridization histochemistry. Transcripts of miR335 decayed to baseline within 3 h after HOKS was stopped. We identified mRNA targets for miR335 using multiple screens: sequence analysis, microinjection of miR335 inhibitors and identification of mRNAs whose transcription decreased during HOKS. Two genes, calbindin and 14-3-3-θ passed these screens. Our data suggest that microRNA transcription could provide an important synaptic or homeostatic mechanism for the regulation of proteins that contribute to Purkinje cell plasticity.

摘要

多达 100 种蛋白质的协调表达可能是维持突触传递简单变化所必需的。虽然每种蛋白质都可能被单独调控,但多个蛋白质的翻译可能受到 microRNAs 的调控。microRNAs 是短的非编码 RNA,可以翻译抑制靶向 mRNAs 中的同源序列。如果这些靶向序列在几个基因中共享,那么单个 microRNA 可以有效地平行调节几个基因的活性。在这里,我们研究了 microRNA 转录是否受小鼠小脑绒球区 climbing fiber-Purkinje 细胞突触中自然诱发的突触活动的影响。小鼠接受了 24 小时的双眼水平视动刺激(HOKS),诱发了一侧绒球 climbing fiber 活动对 Purkinje 细胞的持续增加,而对另一侧 Purkinje 细胞的活动减少。增加的 climbing fiber 活动增加了绒球区 12 种 microRNAs 的转录。其中一种 microRNA,miR335 的转录与刺激持续时间成正比,在 24 小时的 HOKS 后增加了 18 倍。我们使用杂交组织化学将 miR335 转录物定位到 Purkinje 细胞。miR335 转录物在 HOKS 停止后 3 小时内回落到基线。我们使用多种筛选方法识别 miR335 的 mRNA 靶标:序列分析、miR335 抑制剂的微注射以及鉴定在 HOKS 期间转录减少的 mRNAs。两个基因,calbindin 和 14-3-3-θ 通过了这些筛选。我们的数据表明,microRNA 转录可能为调节参与 Purkinje 细胞可塑性的蛋白质提供一种重要的突触或平衡机制。

相似文献

1
Climbing fibers induce microRNA transcription in cerebellar Purkinje cells.
Neuroscience. 2010 Dec 15;171(3):655-65. doi: 10.1016/j.neuroscience.2010.09.039. Epub 2010 Sep 25.
2
Long-term climbing fibre activity induces transcription of microRNAs in cerebellar Purkinje cells.
Philos Trans R Soc Lond B Biol Sci. 2014 Sep 26;369(1652). doi: 10.1098/rstb.2013.0508.
3
Climbing fiber activity reduces 14-3-3-θ regulated GABA(A) receptor phosphorylation in cerebellar Purkinje cells.
Neuroscience. 2012 Jan 10;201:34-45. doi: 10.1016/j.neuroscience.2011.11.021. Epub 2011 Nov 17.
6
α2δ-2 Protein Controls Structure and Function at the Cerebellar Climbing Fiber Synapse.
J Neurosci. 2020 Mar 18;40(12):2403-2415. doi: 10.1523/JNEUROSCI.1514-19.2020. Epub 2020 Feb 21.
7
9
Cerebellar climbing fibers modulate simple spikes in Purkinje cells.
J Neurosci. 2003 Aug 27;23(21):7904-16. doi: 10.1523/JNEUROSCI.23-21-07904.2003.
10
Increase in Purkinje cell gain associated with naturally activated climbing fiber input.
J Neurophysiol. 1983 Jul;50(1):205-19. doi: 10.1152/jn.1983.50.1.205.

引用本文的文献

1
Optokinetic set-point adaptation functions as an internal dynamic calibration mechanism for oculomotor disequilibrium.
iScience. 2022 Oct 12;25(11):105335. doi: 10.1016/j.isci.2022.105335. eCollection 2022 Nov 18.
2
Adaptive Balance in Posterior Cerebellum.
Front Neurol. 2021 Mar 9;12:635259. doi: 10.3389/fneur.2021.635259. eCollection 2021.
3
Spontaneous Nystagmus in the Dark in an Infantile Nystagmus Patient May Represent Negative Optokinetic Afternystagmus.
Front Neurol. 2018 Mar 14;9:151. doi: 10.3389/fneur.2018.00151. eCollection 2018.
5
Oscillations, Timing, Plasticity, and Learning in the Cerebellum.
Cerebellum. 2016 Apr;15(2):122-38. doi: 10.1007/s12311-015-0665-9.
6
The role of epigenetic-related codes in neurocomputation: dynamic hardware in the brain.
Philos Trans R Soc Lond B Biol Sci. 2014 Sep 26;369(1652). doi: 10.1098/rstb.2013.0519.
7
Long-term climbing fibre activity induces transcription of microRNAs in cerebellar Purkinje cells.
Philos Trans R Soc Lond B Biol Sci. 2014 Sep 26;369(1652). doi: 10.1098/rstb.2013.0508.
8
Life without glutamate: the epigenetic effects of glutamate deletion.
Front Mol Neurosci. 2014 Feb 26;7:14. doi: 10.3389/fnmol.2014.00014. eCollection 2014.
9
Spike dynamic and epigenetic malfunctions in epilepsy: a tale of two codes.
Front Neurol. 2013 May 27;4:63. doi: 10.3389/fneur.2013.00063. eCollection 2013.
10
Altered Purkinje cell miRNA expression and SCA1 pathogenesis.
Neurobiol Dis. 2013 Jun;54:456-63. doi: 10.1016/j.nbd.2013.01.019. Epub 2013 Jan 30.

本文引用的文献

1
Regulation of neuronal activity by Cav3-Kv4 channel signaling complexes.
Nat Neurosci. 2010 Mar;13(3):333-7. doi: 10.1038/nn.2493. Epub 2010 Feb 14.
2
MicroRNAs tell an evo-devo story.
Nat Rev Neurosci. 2009 Oct;10(10):754-9. doi: 10.1038/nrn2713. Epub 2009 Sep 9.
4
A boost in microRNAs shapes up the neuron.
EMBO J. 2009 Mar 18;28(6):617-8. doi: 10.1038/emboj.2009.51.
6
The promises and pitfalls of RNA-interference-based therapeutics.
Nature. 2009 Jan 22;457(7228):426-33. doi: 10.1038/nature07758.
7
Translational control of long-lasting synaptic plasticity and memory.
Neuron. 2009 Jan 15;61(1):10-26. doi: 10.1016/j.neuron.2008.10.055.
8
miRNA in situ hybridization in formaldehyde and EDC-fixed tissues.
Nat Methods. 2009 Feb;6(2):139-41. doi: 10.1038/nmeth.1294. Epub 2009 Jan 11.
9
Noncoding RNAs in Long-Term Memory Formation.
Neuroscientist. 2008 Oct;14(5):434-45. doi: 10.1177/1073858408319187.
10
The self-tuning neuron: synaptic scaling of excitatory synapses.
Cell. 2008 Oct 31;135(3):422-35. doi: 10.1016/j.cell.2008.10.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验