Suppr超能文献

存在强声学异质性时的光声图像重建的统计方法。

Statistical approach for optoacoustic image reconstruction in the presence of strong acoustic heterogeneities.

机构信息

Institute for Biological and Medical Imaging, Technical University of Munich, Neuherberg, Germany.

出版信息

IEEE Trans Med Imaging. 2011 Feb;30(2):401-8. doi: 10.1109/TMI.2010.2081683. Epub 2010 Sep 27.

Abstract

A method is presented to reduce artefacts produced in optoacoustic tomography images due to internal reflection or scattering of the acoustic waves. It is based on weighting the tomographic contribution of each detector with the probability that a signal affected by acoustic mismatches is measured at that position. The correction method does not require a priori knowledge of the acoustic or optical properties of the imaged sample. Performance tests were made with agar phantoms that included air gaps for mimicking strong acoustic reflections as well as with an acoustically heterogeneous adult Zebrafish. The results obtained with the method proposed show a clear reduction of the artefacts with respect to the original images reconstructed with filtered back-projection algorithm. This performance is directly related to in vivo small animal imaging applications involving imaging in the presence of bones, lungs, and other highly mismatched organs.

摘要

本文提出了一种减少光声断层扫描图像中由于声波的内部反射或散射而产生的伪影的方法。它基于对每个探测器的层析成像贡献进行加权,加权的依据是在该位置测量到受声不匹配影响的信号的概率。该校正方法不需要事先了解被成像样品的声学或光学性质。性能测试是在包含模拟强声学反射的气隙的琼脂体模以及在具有声异质性的成年斑马鱼上进行的。与使用滤波反投影算法重建原始图像相比,所提出方法获得的结果明显减少了伪影。这种性能与涉及在骨头、肺和其他高度不匹配的器官存在的情况下进行成像的体内小动物成像应用直接相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验