Suppr超能文献

基于投影的图像去模糊的细粒度和空间自适应正则化。

Fine-granularity and spatially-adaptive regularization for projection-based image deblurring.

机构信息

Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506-6109, USA.

出版信息

IEEE Trans Image Process. 2011 Apr;20(4):971-83. doi: 10.1109/TIP.2010.2081681. Epub 2010 Sep 27.

Abstract

This paper studies two classes of regularization strategies to achieve an improved tradeoff between image recovery and noise suppression in projection-based image deblurring. The first is based on a simple fact that r-times Landweber iteration leads to a fixed level of regularization, which allows us to achieve fine-granularity control of projection-based iterative deblurring by varying the value r. The regularization behavior is explained by using the theory of Lagrangian multiplier for variational schemes. The second class of regularization strategy is based on the observation that various regularized filters can be viewed as nonexpansive mappings in the metric space. A deeper understanding about different regularization filters can be gained by probing into their asymptotic behavior--the fixed point of nonexpansive mappings. By making an analogy to the states of matter in statistical physics, we can observe that different image structures (smooth regions, regular edges and textures) correspond to different fixed points of nonexpansive mappings when the temperature(regularization) parameter varies. Such an analogy motivates us to propose a deterministic annealing based approach toward spatial adaptation in projection-based image deblurring. Significant performance improvements over the current state-of-the-art schemes have been observed in our experiments, which substantiates the effectiveness of the proposed regularization strategies.

摘要

本文研究了两类正则化策略,以在基于投影的图像去模糊中实现图像恢复和噪声抑制之间的更好权衡。第一种策略基于一个简单的事实,即 r 次 Landweber 迭代会导致固定的正则化水平,这允许我们通过改变 r 值来实现基于投影的迭代去模糊的细粒度控制。正则化行为通过使用变分方案的拉格朗日乘子理论来解释。第二类正则化策略基于这样的观察,即各种正则化滤波器可以看作是度量空间中的非扩张映射。通过探究不同正则化滤波器的渐近行为——非扩张映射的不动点,可以更深入地了解它们。通过将统计物理学中的物质状态进行类比,我们可以观察到当温度(正则化)参数变化时,不同的图像结构(平滑区域、规则边缘和纹理)对应于非扩张映射的不同不动点。这种类比启发我们提出了一种基于确定性退火的方法,用于基于投影的图像去模糊中的空间自适应。在我们的实验中观察到了比当前最先进方案显著的性能提升,这证明了所提出的正则化策略的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验