Division of Structure Biology, Department of Basic Medical Sciences, The Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17575-9. doi: 10.1073/pnas.1009598107. Epub 2010 Sep 27.
No-go decay and nonstop decay are mRNA surveillance pathways that detect translational stalling and degrade the underlying mRNA, allowing the correct translation of the genetic code. In eukaryotes, the protein complex of Pelota (yeast Dom34) and Hbs1 translational GTPase recognizes the stalled ribosome containing the defective mRNA. Recently, we found that archaeal Pelota (aPelota) associates with archaeal elongation factor 1α (aEF1α) to act in the mRNA surveillance pathway, which accounts for the lack of an Hbs1 ortholog in archaea. Here we present the complex structure of aPelota and GTP-bound aEF1α determined at 2.3-Å resolution. The structure reveals how GTP-bound aEF1α recognizes aPelota and how aPelota in turn stabilizes the GTP form of aEF1α. Combined with the functional analysis in yeast, the present results provide structural insights into the molecular interaction between eukaryotic Pelota and Hbs1. Strikingly, the aPelota·aEF1α complex structurally resembles the tRNA·EF-Tu complex bound to the ribosome. Our findings suggest that the molecular mimicry of tRNA in the distorted "A/T state" conformation by Pelota enables the complex to efficiently detect and enter the empty A site of the stalled ribosome.
无终止衰变和非终止衰变是 mRNA 监控途径,可检测翻译停滞并降解潜在的 mRNA,从而正确翻译遗传密码。在真核生物中,Pelota(酵母 Dom34)和 Hbs1 翻译 GTPase 蛋白复合物识别包含有缺陷 mRNA 的停滞核糖体。最近,我们发现古菌 Pelota(aPelota)与古菌延伸因子 1α(aEF1α)结合,在 mRNA 监控途径中发挥作用,这解释了古菌中缺乏 Hbs1 直系同源物的原因。在这里,我们展示了在 2.3 Å 分辨率下测定的 aPelota 和 GTP 结合的 aEF1α 的复合物结构。该结构揭示了 GTP 结合的 aEF1α 如何识别 aPelota,以及 aPelota 如何反过来稳定 aEF1α 的 GTP 形式。结合酵母中的功能分析,目前的结果提供了真核生物 Pelota 和 Hbs1 之间分子相互作用的结构见解。引人注目的是,aPelota·aEF1α 复合物在结构上类似于与核糖体结合的 tRNA·EF-Tu 复合物。我们的发现表明,Pelota 在扭曲的“A/T 状态”构象中模拟 tRNA,使复合物能够有效地检测并进入停滞核糖体的空 A 位。