Ito Kosuke, Honda Takayoshi, Suzuki Takahiro, Miyoshi Tomohiro, Murakami Ryo, Yao Min, Uchiumi Toshio
Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan.
Nucleic Acids Res. 2014 Dec 16;42(22):14042-52. doi: 10.1093/nar/gku1248. Epub 2014 Nov 26.
In all organisms, the large ribosomal subunit contains multiple copies of a flexible protein, the so-called 'stalk'. The C-terminal domain (CTD) of the stalk interacts directly with the translational GTPase factors, and this interaction is required for factor-dependent activity on the ribosome. Here we have determined the structure of a complex of the CTD of the archaeal stalk protein aP1 and the GDP-bound archaeal elongation factor aEF1α at 2.3 Å resolution. The structure showed that the CTD of aP1 formed a long extended α-helix, which bound to a cleft between domains 1 and 3 of aEF1α, and bridged these domains. This binding between the CTD of aP1 and the aEF1α•GDP complex was formed mainly by hydrophobic interactions. The docking analysis showed that the CTD of aP1 can bind to aEF1α•GDP located on the ribosome. An additional biochemical assay demonstrated that the CTD of aP1 also bound to the aEF1α•GTP•aminoacyl-tRNA complex. These results suggest that the CTD of aP1 interacts with aEF1α at various stages in translation. Furthermore, phylogenetic perspectives and functional analyses suggested that the eukaryotic stalk protein also interacts directly with domains 1 and 3 of eEF1α, in a manner similar to the interaction of archaeal aP1 with aEF1α.
在所有生物体中,大核糖体亚基都包含多个拷贝的一种柔性蛋白质,即所谓的“柄”。柄的C端结构域(CTD)直接与翻译GTP酶因子相互作用,这种相互作用是核糖体上因子依赖性活性所必需的。在这里,我们以2.3 Å的分辨率确定了古菌柄蛋白aP1的CTD与结合GDP的古菌延伸因子aEF1α复合物的结构。该结构表明,aP1的CTD形成了一个长的延伸α螺旋,它与aEF1α的结构域1和3之间的裂隙结合,并桥接这些结构域。aP1的CTD与aEF1α•GDP复合物之间的这种结合主要由疏水相互作用形成。对接分析表明,aP1的CTD可以与位于核糖体上的aEF1α•GDP结合。另外的生化分析表明,aP1的CTD也与aEF1α•GTP•氨酰-tRNA复合物结合。这些结果表明,aP1的CTD在翻译的各个阶段与aEF1α相互作用。此外,系统发育观点和功能分析表明,真核生物的柄蛋白也以类似于古菌aP1与aEF1α相互作用的方式直接与eEF1α的结构域1和3相互作用。