Suppr超能文献

Stromatoxin 敏感的异源多聚体 Kv2.1/Kv9.3 通道有助于控制脑动脉直径的肌源性调节。

Stromatoxin-sensitive, heteromultimeric Kv2.1/Kv9.3 channels contribute to myogenic control of cerebral arterial diameter.

机构信息

The Smooth Muscle Research Group, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1.

出版信息

J Physiol. 2010 Nov 15;588(Pt 22):4519-37. doi: 10.1113/jphysiol.2010.196618. Epub 2010 Sep 27.

Abstract

Cerebral vascular smooth muscle contractility plays a crucial role in controlling arterial diameter and, thereby, blood flow regulation in the brain. A number of K(+) channels have been suggested to contribute to the regulation of diameter by controlling smooth muscle membrane potential (E(m)) and Ca(2+) influx. Previous studies indicate that stromatoxin (ScTx1)-sensitive, Kv2-containing channels contribute to the control of cerebral arterial diameter at 80 mmHg, but their precise role and molecular composition were not determined. Here, we tested if Kv2 subunits associate with 'silent' subunits from the Kv5, Kv6, Kv8 or Kv9 subfamilies to form heterotetrameric channels that contribute to control of diameter of rat middle cerebral arteries (RMCAs) over a range of intraluminal pressure from 10 to 100 mmHg. The predominant mRNAs expressed by RMCAs encode Kv2.1 and Kv9.3 subunits. Co-localization of Kv2.1 and Kv9.3 proteins at the plasma membrane of dissociated single RMCA myocytes was detected by proximity ligation assay. ScTx1-sensitive native current of RMCA myocytes and Kv2.1/Kv9.3 currents exhibited functional identity based on the similarity of their deactivation kinetics and voltage dependence of activation that were distinct from those of homomultimeric Kv2.1 channels. ScTx1 treatment enhanced the myogenic response of pressurized RMCAs between 40 and 100 mmHg, but this toxin also caused constriction between 10 and 40 mmHg that was not previously observed following inhibition of large conductance Ca(2+)-activated K(+) (BK(Ca)) and Kv1 channels. Taken together, this study defines the molecular basis of Kv2-containing channels and contributes to our understanding of the functional significance of their expression in cerebral vasculature. Specifically, our findings provide the first evidence of heteromultimeric Kv2.1/Kv9.3 channel expression in RMCA myocytes and their distinct contribution to control of cerebral arterial diameter over a wider range of E(m) and transmural pressure than Kv1 or BK(Ca) channels owing to their negative range of voltage-dependent activation.

摘要

脑血管平滑肌收缩性在控制动脉直径和调节脑血流方面起着至关重要的作用。许多钾离子通道被认为通过控制平滑肌膜电位(Em)和钙离子内流来调节直径。先前的研究表明,stromatoxin(ScTx1)敏感的 Kv2 通道有助于在 80mmHg 时控制脑动脉直径,但它们的确切作用和分子组成尚未确定。在这里,我们测试了 Kv2 亚基是否与 Kv5、Kv6、Kv8 或 Kv9 亚家族的“沉默”亚基形成异四聚体通道,以在 10 至 100mmHg 的腔内压力范围内对大鼠大脑中动脉(RMCAs)的直径进行控制。RMCAs 表达的主要 mRNA 编码 Kv2.1 和 Kv9.3 亚基。通过接近连接测定法检测到 Kv2.1 和 Kv9.3 蛋白在分离的单个 RMCA 心肌细胞质膜上的共定位。ScTx1 敏感的 RMCA 心肌细胞的天然电流和 Kv2.1/Kv9.3 电流表现出功能同一性,这基于它们失活动力学和激活的电压依赖性的相似性,这些与同源三聚体 Kv2.1 通道的不同。ScTx1 处理增强了在 40 至 100mmHg 之间加压的 RMCAs 的肌源性反应,但这种毒素也在 10 至 40mmHg 之间引起收缩,这在抑制大电导钙激活钾(BK(Ca))和 Kv1 通道后以前没有观察到。总的来说,这项研究定义了 Kv2 通道的分子基础,并有助于我们理解其在脑血管中的表达的功能意义。具体来说,我们的发现提供了在 RMCA 心肌细胞中表达 Kv2 通道的异四聚体 Kv2.1/Kv9.3 通道的第一个证据,以及它们在更大范围的 Em 和跨壁压下对脑动脉直径的控制作用,与 Kv1 或 BK(Ca)通道不同,由于其电压依赖性激活的负范围,它们的作用更为明显。

相似文献

3
Kv2 channels oppose myogenic constriction of rat cerebral arteries.Kv2通道对抗大鼠脑动脉的肌源性收缩。
Am J Physiol Cell Physiol. 2006 Aug;291(2):C348-56. doi: 10.1152/ajpcell.00086.2006. Epub 2006 Mar 29.

引用本文的文献

1
Regulation of Kv2.1 Channels by Kv9.1 Variants.Kv9.1变体对Kv2.1通道的调控
Biomedicines. 2025 May 6;13(5):1119. doi: 10.3390/biomedicines13051119.
4
Vascular Function and Ion Channels in Alzheimer's Disease.阿尔茨海默病中的血管功能和离子通道。
Microcirculation. 2024 Oct;31(7):e12881. doi: 10.1111/micc.12881. Epub 2024 Aug 27.
9
Ion channel molecular complexes in vascular smooth muscle.血管平滑肌中的离子通道分子复合物
Front Physiol. 2022 Aug 26;13:999369. doi: 10.3389/fphys.2022.999369. eCollection 2022.
10
Mechanism of use-dependent Kv2 channel inhibition by RY785.RY785 对使用依赖性 Kv2 通道抑制的作用机制。
J Gen Physiol. 2022 Jun 6;154(6). doi: 10.1085/jgp.202112981. Epub 2022 Apr 18.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验