INRA, UMR 1191 Physiologie Moléculaire des Semences, 16 bd Lavoisier, 49045, Angers Cedex 01, France.
Theor Appl Genet. 2011 Feb;122(2):429-44. doi: 10.1007/s00122-010-1458-7. Epub 2010 Sep 29.
Enhancing the knowledge on the genetic basis of germination and heterotrophic growth at extreme temperatures is of major importance for improving crop establishment. A quantitative trait loci (QTL) analysis was carried out at sub- and supra-optimal temperatures at these early stages in the model Legume Medicago truncatula. On the basis of an ecophysiological model framework, two populations of recombinant inbred lines were chosen for the contrasting behaviours of parental lines: LR5 at sub-optimal temperatures (5 or 10°C) and LR4 at a supra-optimal temperature (20°C). Seed masses were measured in all lines. For LR5, germination rates and hypocotyl growth were measured by hand, whereas for LR4, imbibition and germination rates as well as early embryonic axis growth were measured using an automated image capture and analysis device. QTLs were found for all traits. The phenotyping framework we defined for measuring variables, distinguished stages and enabled identification of distinct QTLs for seed mass (chromosomes 1, 5, 7 and 8), imbibition (chromosome 4), germination (chromosomes 3, 5, 7 and 8) and heterotrophic growth (chromosomes 1, 2, 3 and 8). The three QTL identified for hypocotyl length at sub-optimal temperature explained the largest part of the phenotypic variation (60% together). One digenic interaction was found for hypocotyl width at sub-optimal temperature and the loci involved were linked to additive QTLs for hypocotyl elongation at low temperature. Together with working on a model plant, this approach facilitated the identification of genes specific to each stage that could provide reliable markers for assisting selection and improving crop establishment. With this aim in view, an initial set of putative candidate genes was identified in the light of the role of abscissic acid/gibberellin balance in regulating germination at high temperatures (e.g. ABI4, ABI5), the molecular cascade in response to cold stress (e.g. CBF1, ICE1) and hypotheses on changes in cell elongation (e.g. GASA1, AtEXPA11) with changes in temperatures based on studies at the whole plant scale.
提高对萌发和异养生长在极端温度下的遗传基础的认识,对于提高作物的建立非常重要。在模式豆科植物紫花苜蓿的这些早期阶段,在亚最佳和超最佳温度下进行了数量性状位点(QTL)分析。基于生态生理模型框架,选择了两个重组自交系群体,用于比较亲本系的对比行为:LR5 在亚最佳温度(5 或 10°C)和 LR4 在超最佳温度(20°C)下。在所有系中测量种子质量。对于 LR5,通过手动测量发芽率和下胚轴生长,而对于 LR4,使用自动图像捕获和分析设备测量吸胀率和发芽率以及早期胚胎轴生长。发现了所有性状的 QTL。我们定义的表型框架用于测量变量,区分阶段,并能够识别种子质量(染色体 1、5、7 和 8)、吸胀(染色体 4)、萌发(染色体 3、5、7 和 8)和异养生长(染色体 1、2、3 和 8)的不同 QTL。在亚最佳温度下鉴定的三个与下胚轴长度相关的 QTL 解释了最大部分的表型变异(总共 60%)。在亚最佳温度下发现了一个与下胚轴宽度相关的双基因相互作用,涉及的基因与低温下下胚轴伸长的加性 QTL 相连。与在模式植物上合作一样,这种方法有助于鉴定每个阶段特有的基因,这些基因可以为辅助选择和提高作物建立提供可靠的标记。为此,根据高温下脱落酸/赤霉素平衡在调节萌发中的作用(例如 ABI4、ABI5)、对冷胁迫的分子级联反应(例如 CBF1、ICE1)以及关于细胞伸长变化的假设(例如 GASA1、AtEXPA11),根据在整个植物尺度上的研究,确定了一组初始的假定候选基因。