Doubrovinski K, Polyakov O, Kaschube M
Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
Eur Phys J E Soft Matter. 2010 Oct;33(2):105-10. doi: 10.1140/epje/i2010-10655-6. Epub 2010 Sep 29.
Epithelial morphogenesis plays a major role in embryonic development. During this process cells within epithelial sheets undergo complex spatial reorganization to form organs with specific shapes and functions. The dynamics of epithelial cell reorganization is driven by forces generated through the cytoskeleton, an active network of polar filaments and motor proteins. Over the relevant time scales, individual cytoskeletal filaments typically undergo turnover, where existing filaments depolymerize into monomers and new filaments are nucleated. Here we extend a previously developed physical description of the force generation by the cytoskeleton to account for the effects of filament turnover. We find that filament turnover can significantly stabilize contractile structures against rupture and discuss several possible routes to instability resulting in the rupture of the cytoskeletal meshwork. Additionally, we show that our minimal description can account for a range of phenomena that were recently observed in fruit fly epithelial morphogenesis.
上皮形态发生在胚胎发育中起主要作用。在此过程中,上皮细胞层内的细胞经历复杂的空间重组,以形成具有特定形状和功能的器官。上皮细胞重组的动力学是由细胞骨架产生的力驱动的,细胞骨架是由极性细丝和运动蛋白组成的活跃网络。在相关的时间尺度上,单个细胞骨架细丝通常会经历周转,即现有细丝解聚成单体,新的细丝开始形成。在这里,我们扩展了先前开发的关于细胞骨架产生力的物理描述,以考虑细丝周转的影响。我们发现细丝周转可以显著稳定收缩结构以防止破裂,并讨论了几种可能导致细胞骨架网络破裂的不稳定途径。此外,我们表明,我们的最小描述可以解释最近在果蝇上皮形态发生中观察到的一系列现象。