Suppr超能文献

基于模型的联合分割与弹性配准用于主动脉弓的精确量化

Combined model-based segmentation and elastic registration for accurate quantification of the aortic arch.

作者信息

Biesdorf Andreas, Rohr Karl, von Tengg-Kobligk Hendrik, Wörz Stefan

机构信息

Dept. Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, University of Heidelberg, BIOQUANT, IPMB, and DKFZ Heidelberg.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 1):444-51. doi: 10.1007/978-3-642-15705-9_54.

Abstract

Accurate quantification of the morphology of vessels is important for diagnosis and treatment of cardiovascular diseases. We introduce a new approach for the quantification of the aortic arch morphology that combines 3D model-based segmentation with elastic image registration. The performance of the approach has been evaluated using 3D synthetic images and clinically relevant 3D CTA images including pathologies. We also performed a comparison with a previous approach.

摘要

准确量化血管形态对于心血管疾病的诊断和治疗至关重要。我们引入了一种新的方法来量化主动脉弓形态,该方法将基于3D模型的分割与弹性图像配准相结合。已使用3D合成图像和包括病变在内的临床相关3D CTA图像对该方法的性能进行了评估。我们还与之前的方法进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验