Pearlman Paul C, Tagare Hemant D, Sinusas Albert J, Duncan James S
Department of Electrical Engineering, Yale University, New Haven, CT, USA.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):502-9. doi: 10.1007/978-3-642-15705-9_61.
We present an approach for segmenting the left ventricular endocardial boundaries from radio-frequency (RF) ultrasound. The method employs a computationally efficient two-frame linear predictor which exploits the spatio-temporal coherence of the data. By performing segmentation using the RF data we are able to overcome problems due to image inhomogeneities that are often amplified in B-mode segmentation, as well as provide geometric constraints for RF phase-based speckle tracking. We illustrate the advantages of our approach by comparing it to manual tracings of B-mode data and automated B-mode boundary detection using standard (Chan and Vese-based) level sets on echocardiographic images from 28 3D sequences acquired from 6 canine studies, imaged both at baseline and 1 hour post infarction.
我们提出了一种从射频(RF)超声中分割左心室内膜边界的方法。该方法采用了一种计算效率高的两帧线性预测器,它利用了数据的时空相干性。通过使用RF数据进行分割,我们能够克服由于图像不均匀性而产生的问题,这些问题在B模式分割中常常被放大,同时还能为基于RF相位的散斑跟踪提供几何约束。我们通过将我们的方法与B模式数据的手动追踪以及使用标准(基于Chan和Vese)水平集对来自6项犬类研究的28个三维序列的超声心动图图像进行自动B模式边界检测进行比较,来说明我们方法的优势。这些图像在基线和心肌梗死后1小时均进行了成像。