Suppr超能文献

使用压缩感知技术对高分辨率扩散成像(HARDI)数据进行快速准确的重建。

Fast and accurate reconstruction of HARDI data using compressed sensing.

作者信息

Michailovich Oleg, Rathi Yogesh

机构信息

Department of ECE, University of Waterloo, USA.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 1):607-14. doi: 10.1007/978-3-642-15705-9_74.

Abstract

A spectrum of brain-related disorders are nowadays known to manifest themselves in degradation of the integrity and connectivity of neural tracts in the white matter of the brain. Such damage tends to affect the pattern of water diffusion in the white matter--the information which can be quantified by diffusion MRI (dMRI). Unfortunately, practical implementation of dMRI still poses a number of challenges which hamper its wide-spread integration into regular clinical practice. Chief among these is the problem of long scanning times. In particular, in the case of High Angular Resolution Diffusion Imaging (HARDI), the scanning times are known to increase linearly with the number of diffusion-encoding gradients. In this research, we use the theory of compressive sampling (aka compressed sensing) to substantially reduce the number of diffusion gradients without compromising the informational content of HARDI signals. The experimental part of our study compares the proposed method with a number of alternative approaches, and shows that the former results in more accurate estimation of HARDI data in terms of the mean squared error.

摘要

如今已知一系列与大脑相关的疾病会表现为大脑白质中神经束的完整性和连通性退化。这种损伤往往会影响白质中的水扩散模式,而这一信息可通过扩散磁共振成像(dMRI)进行量化。不幸的是,dMRI的实际应用仍然面临一些挑战,这阻碍了它广泛融入常规临床实践。其中最主要的是扫描时间长的问题。特别是在高角分辨率扩散成像(HARDI)的情况下,已知扫描时间会随着扩散编码梯度的数量线性增加。在本研究中,我们使用压缩采样理论(又称压缩感知)在不影响HARDI信号信息内容的情况下大幅减少扩散梯度的数量。我们研究的实验部分将所提出的方法与多种替代方法进行了比较,结果表明就均方误差而言,前者能更准确地估计HARDI数据。

相似文献

3
Brain connectivity using geodesics in HARDI.利用HARDI中的测地线进行脑连接性研究。
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):482-9. doi: 10.1007/978-3-642-04271-3_59.
5
6
Tractometer: towards validation of tractography pipelines.束径仪:用于追踪技术管道的验证。
Med Image Anal. 2013 Oct;17(7):844-57. doi: 10.1016/j.media.2013.03.009. Epub 2013 Apr 25.
7
Tractography via the ensemble average propagator in diffusion MRI.扩散磁共振成像中基于总体平均传播子的纤维束成像
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):339-46. doi: 10.1007/978-3-642-33418-4_42.
10
Characterization of anatomic fiber bundles for diffusion tensor image analysis.用于扩散张量图像分析的解剖纤维束特征描述
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):903-10. doi: 10.1007/978-3-642-04268-3_111.

引用本文的文献

7
Challenges for biophysical modeling of microstructure.微观结构的生物物理建模面临的挑战。
J Neurosci Methods. 2020 Oct 1;344:108861. doi: 10.1016/j.jneumeth.2020.108861. Epub 2020 Jul 18.
9
Validation of tractography: Comparison with manganese tracing.纤维束成像的验证:与锰示踪法的比较。
Hum Brain Mapp. 2015 Oct;36(10):4116-34. doi: 10.1002/hbm.22902. Epub 2015 Jul 14.
10
Multi-shell diffusion signal recovery from sparse measurements.从稀疏测量中恢复多壳扩散信号
Med Image Anal. 2014 Oct;18(7):1143-56. doi: 10.1016/j.media.2014.06.003. Epub 2014 Jul 5.

本文引用的文献

1
On approximation of orientation distributions by means of spherical ridgelets.基于球脊波的方向分布逼近。
IEEE Trans Image Process. 2010 Feb;19(2):461-77. doi: 10.1109/TIP.2009.2035886. Epub 2009 Nov 3.
5
Improved k-t BLAST and k-t SENSE using FOCUSS.使用FOCUSS改进的k-t BLAST和k-t SENSE。
Phys Med Biol. 2007 Jun 7;52(11):3201-26. doi: 10.1088/0031-9155/52/11/018. Epub 2007 May 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验