Suppr超能文献

使用压缩感知技术对高分辨率扩散成像(HARDI)数据进行快速准确的重建。

Fast and accurate reconstruction of HARDI data using compressed sensing.

作者信息

Michailovich Oleg, Rathi Yogesh

机构信息

Department of ECE, University of Waterloo, USA.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 1):607-14. doi: 10.1007/978-3-642-15705-9_74.

Abstract

A spectrum of brain-related disorders are nowadays known to manifest themselves in degradation of the integrity and connectivity of neural tracts in the white matter of the brain. Such damage tends to affect the pattern of water diffusion in the white matter--the information which can be quantified by diffusion MRI (dMRI). Unfortunately, practical implementation of dMRI still poses a number of challenges which hamper its wide-spread integration into regular clinical practice. Chief among these is the problem of long scanning times. In particular, in the case of High Angular Resolution Diffusion Imaging (HARDI), the scanning times are known to increase linearly with the number of diffusion-encoding gradients. In this research, we use the theory of compressive sampling (aka compressed sensing) to substantially reduce the number of diffusion gradients without compromising the informational content of HARDI signals. The experimental part of our study compares the proposed method with a number of alternative approaches, and shows that the former results in more accurate estimation of HARDI data in terms of the mean squared error.

摘要

如今已知一系列与大脑相关的疾病会表现为大脑白质中神经束的完整性和连通性退化。这种损伤往往会影响白质中的水扩散模式,而这一信息可通过扩散磁共振成像(dMRI)进行量化。不幸的是,dMRI的实际应用仍然面临一些挑战,这阻碍了它广泛融入常规临床实践。其中最主要的是扫描时间长的问题。特别是在高角分辨率扩散成像(HARDI)的情况下,已知扫描时间会随着扩散编码梯度的数量线性增加。在本研究中,我们使用压缩采样理论(又称压缩感知)在不影响HARDI信号信息内容的情况下大幅减少扩散梯度的数量。我们研究的实验部分将所提出的方法与多种替代方法进行了比较,结果表明就均方误差而言,前者能更准确地估计HARDI数据。

相似文献

1
Fast and accurate reconstruction of HARDI data using compressed sensing.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):607-14. doi: 10.1007/978-3-642-15705-9_74.
2
Joint 6D k-q Space Compressed Sensing for Accelerated High Angular Resolution Diffusion MRI.
Inf Process Med Imaging. 2015;24:782-93. doi: 10.1007/978-3-319-19992-4_62.
3
Brain connectivity using geodesics in HARDI.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):482-9. doi: 10.1007/978-3-642-04271-3_59.
4
Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries.
Magn Reson Med. 2012 Dec;68(6):1747-54. doi: 10.1002/mrm.24505. Epub 2012 Sep 24.
5
Dual tensor atlas generation based on a cohort of coregistered non-HARDI datasets.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):869-76. doi: 10.1007/978-3-642-04268-3_107.
6
Tractometer: towards validation of tractography pipelines.
Med Image Anal. 2013 Oct;17(7):844-57. doi: 10.1016/j.media.2013.03.009. Epub 2013 Apr 25.
7
Tractography via the ensemble average propagator in diffusion MRI.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):339-46. doi: 10.1007/978-3-642-33418-4_42.
8
A novel measure of fractional anisotropy based on the tensor distribution function.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):845-52. doi: 10.1007/978-3-642-04268-3_104.
9
Leveraging EAP-Sparsity for Compressed Sensing of MS-HARDI in (k, q)-Space.
Inf Process Med Imaging. 2015;24:375-86. doi: 10.1007/978-3-319-19992-4_29.
10
Characterization of anatomic fiber bundles for diffusion tensor image analysis.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):903-10. doi: 10.1007/978-3-642-04268-3_111.

引用本文的文献

1
QID: An Image-Conditioned Diffusion Model for -space Up-sampling of DWI Data.
Comput Diffus MRI. 2025;15171:119-131. doi: 10.1007/978-3-031-86920-4_11. Epub 2025 Apr 18.
3
Down-sampling in diffusion MRI: a bundle-specific DTI and NODDI study.
Front Neuroimaging. 2024 Mar 28;3:1359589. doi: 10.3389/fnimg.2024.1359589. eCollection 2024.
6
Improving delineation of the corticospinal tract in the monkey brain scanned with conventional DTI by using a compressed sensing based algorithm.
Investig Magn Reson Imaging. 2022 Dec;26(4):265-274. doi: 10.13104/imri.2022.26.4.265. Epub 2022 Dec 31.
7
Challenges for biophysical modeling of microstructure.
J Neurosci Methods. 2020 Oct 1;344:108861. doi: 10.1016/j.jneumeth.2020.108861. Epub 2020 Jul 18.
8
Quantitative evaluation of fiber tractography with a Delaunay triangulation-based interpolation approach.
Med Biol Eng Comput. 2019 Apr;57(4):925-938. doi: 10.1007/s11517-018-1932-y. Epub 2018 Nov 28.
9
Validation of tractography: Comparison with manganese tracing.
Hum Brain Mapp. 2015 Oct;36(10):4116-34. doi: 10.1002/hbm.22902. Epub 2015 Jul 14.
10
Multi-shell diffusion signal recovery from sparse measurements.
Med Image Anal. 2014 Oct;18(7):1143-56. doi: 10.1016/j.media.2014.06.003. Epub 2014 Jul 5.

本文引用的文献

1
On approximation of orientation distributions by means of spherical ridgelets.
IEEE Trans Image Process. 2010 Feb;19(2):461-77. doi: 10.1109/TIP.2009.2035886. Epub 2009 Nov 3.
2
k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI.
Magn Reson Med. 2009 Jan;61(1):103-16. doi: 10.1002/mrm.21757.
3
Sparse MRI: The application of compressed sensing for rapid MR imaging.
Magn Reson Med. 2007 Dec;58(6):1182-95. doi: 10.1002/mrm.21391.
4
Regularized, fast, and robust analytical Q-ball imaging.
Magn Reson Med. 2007 Sep;58(3):497-510. doi: 10.1002/mrm.21277.
5
Improved k-t BLAST and k-t SENSE using FOCUSS.
Phys Med Biol. 2007 Jun 7;52(11):3201-26. doi: 10.1088/0031-9155/52/11/018. Epub 2007 May 10.
6
Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?
Neuroimage. 2007 Jan 1;34(1):144-55. doi: 10.1016/j.neuroimage.2006.09.018. Epub 2006 Oct 27.
8
Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis.
Magn Reson Med. 2006 Jul;56(1):104-17. doi: 10.1002/mrm.20931.
9
Multiple-fiber reconstruction algorithms for diffusion MRI.
Ann N Y Acad Sci. 2005 Dec;1064:113-33. doi: 10.1196/annals.1340.018.
10
Measurement of fiber orientation distributions using high angular resolution diffusion imaging.
Magn Reson Med. 2005 Nov;54(5):1194-206. doi: 10.1002/mrm.20667.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验