Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Magn Reson Med. 2012 Dec;68(6):1747-54. doi: 10.1002/mrm.24505. Epub 2012 Sep 24.
Diffusion spectrum imaging offers detailed information on complex distributions of intravoxel fiber orientations at the expense of extremely long imaging times (∼1 h). Recent work by Menzel et al. demonstrated successful recovery of diffusion probability density functions from sub-Nyquist sampled q-space by imposing sparsity constraints on the probability density functions under wavelet and total variation transforms. As the performance of compressed sensing reconstruction depends strongly on the level of sparsity in the selected transform space, a dictionary specifically tailored for diffusion probability density functions can yield higher fidelity results. To our knowledge, this work is the first application of adaptive dictionaries in diffusion spectrum imaging, whereby we reduce the scan time of whole brain diffusion spectrum imaging acquisition from 50 to 17 min while retaining high image quality. In vivo experiments were conducted with the 3T Connectome MRI. The root-mean-square error of the reconstructed "missing" diffusion images were calculated by comparing them to a gold standard dataset (obtained from acquiring 10 averages of diffusion images in these missing directions). The root-mean-square error from the proposed reconstruction method is up to two times lower than that of Menzel et al.'s method and is actually comparable to that of the fully-sampled 50 minute scan. Comparison of tractography solutions in 18 major white-matter pathways also indicated good agreement between the fully-sampled and 3-fold accelerated reconstructions. Further, we demonstrate that a dictionary trained using probability density functions from a single slice of a particular subject generalizes well to other slices from the same subject, as well as to slices from other subjects.
扩散谱成像提供了关于体素内纤维方向复杂分布的详细信息,但代价是成像时间极长(约 1 小时)。Menzel 等人最近的工作通过在小波和全变差变换下对概率密度函数施加稀疏性约束,从亚奈奎斯特采样的 q-空间成功恢复了扩散概率密度函数。由于压缩感知重建的性能强烈依赖于所选变换空间中的稀疏度水平,因此专门为扩散概率密度函数设计的字典可以产生更高保真度的结果。据我们所知,这是自适应字典在扩散谱成像中的首次应用,通过这种方法,我们将全脑扩散谱成像采集的扫描时间从 50 分钟减少到 17 分钟,同时保持了高质量的图像。在 3T Connectome MRI 上进行了体内实验。通过将重建的“缺失”扩散图像与黄金标准数据集(通过在这些缺失方向获取 10 次扩散图像的平均值获得)进行比较,计算出重建“缺失”扩散图像的均方根误差。与 Menzel 等人的方法相比,所提出的重建方法的均方根误差最多低两倍,实际上与完全采样的 50 分钟扫描相当。在 18 条主要白质通路中的轨迹追踪解决方案的比较也表明,完全采样和 3 倍加速重建之间具有很好的一致性。此外,我们证明了使用来自特定受试者的单个切片的概率密度函数训练的字典可以很好地推广到来自同一受试者的其他切片以及来自其他受试者的切片。