Zhang Pei, Adeshina Steve A, Cootes Timothy F
Imaging Science and Biomedical Engineering, The University of Manchester, UK.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):635-42. doi: 10.1007/978-3-642-15745-5_78.
We seek to automatically establish dense correspondences across groups of images. Existing non-rigid registration methods usually involve local optimisation and thus require accurate initialisation. It is difficult to obtain such initialisation for images of complex structures, especially those with many self-similar parts. In this paper we show that satisfactory initialisation for such images can be found by a parts+geometry model. We use a population based optimisation strategy to select the best parts from a large pool of candidates. The best matches of the optimal model are used to initialise a groupwise registration algorithm, leading to dense, accurate results. We demonstrate the efficacy of the approach on two challenging datasets, and report on a detailed quantitative evaluation of its performance.
我们试图自动建立跨图像组的密集对应关系。现有的非刚性配准方法通常涉及局部优化,因此需要精确的初始化。对于复杂结构的图像,尤其是那些有许多自相似部分的图像,很难获得这样的初始化。在本文中,我们表明通过部件+几何模型可以找到此类图像的满意初始化。我们使用基于总体的优化策略从大量候选部件中选择最佳部件。最优模型的最佳匹配用于初始化一个分组配准算法,从而得到密集、准确的结果。我们在两个具有挑战性的数据集上证明了该方法的有效性,并报告了对其性能的详细定量评估。