Suppr超能文献

自动学习稀疏对应关系以初始化分组配准。

Automatic learning sparse correspondences for initialising groupwise registration.

作者信息

Zhang Pei, Adeshina Steve A, Cootes Timothy F

机构信息

Imaging Science and Biomedical Engineering, The University of Manchester, UK.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 2):635-42. doi: 10.1007/978-3-642-15745-5_78.

Abstract

We seek to automatically establish dense correspondences across groups of images. Existing non-rigid registration methods usually involve local optimisation and thus require accurate initialisation. It is difficult to obtain such initialisation for images of complex structures, especially those with many self-similar parts. In this paper we show that satisfactory initialisation for such images can be found by a parts+geometry model. We use a population based optimisation strategy to select the best parts from a large pool of candidates. The best matches of the optimal model are used to initialise a groupwise registration algorithm, leading to dense, accurate results. We demonstrate the efficacy of the approach on two challenging datasets, and report on a detailed quantitative evaluation of its performance.

摘要

我们试图自动建立跨图像组的密集对应关系。现有的非刚性配准方法通常涉及局部优化,因此需要精确的初始化。对于复杂结构的图像,尤其是那些有许多自相似部分的图像,很难获得这样的初始化。在本文中,我们表明通过部件+几何模型可以找到此类图像的满意初始化。我们使用基于总体的优化策略从大量候选部件中选择最佳部件。最优模型的最佳匹配用于初始化一个分组配准算法,从而得到密集、准确的结果。我们在两个具有挑战性的数据集上证明了该方法的有效性,并报告了对其性能的详细定量评估。

相似文献

1
Automatic learning sparse correspondences for initialising groupwise registration.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):635-42. doi: 10.1007/978-3-642-15745-5_78.
2
Automatic part selection for groupwise registration.
Inf Process Med Imaging. 2011;22:636-47. doi: 10.1007/978-3-642-22092-0_52.
3
Automatic construction of parts+geometry models for initializing groupwise registration.
IEEE Trans Med Imaging. 2012 Feb;31(2):341-58. doi: 10.1109/TMI.2011.2169077. Epub 2011 Sep 23.
4
Initialising groupwise non-rigid registration using multiple parts+geometry models.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):156-63. doi: 10.1007/978-3-642-33454-2_20.
5
6
Similarity metrics for groupwise non-rigid registration.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):544-52. doi: 10.1007/978-3-540-75759-7_66.
7
Groupwise registration by hierarchical anatomical correspondence detection.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):684-91. doi: 10.1007/978-3-642-15745-5_84.
8
Simultaneous registration and landmark detection.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2634-7. doi: 10.1109/IEMBS.2006.259991.
9
Geometric direct search algorithms for image registration.
IEEE Trans Image Process. 2007 Sep;16(9):2215-24. doi: 10.1109/tip.2007.901809.
10
A hamiltonian particle method for diffeomorphic image registration.
Inf Process Med Imaging. 2007;20:396-407. doi: 10.1007/978-3-540-73273-0_33.

引用本文的文献

1
A dynamic tree-based registration could handle possible large deformations among MR brain images.
Comput Med Imaging Graph. 2016 Sep;52:1-7. doi: 10.1016/j.compmedimag.2016.04.005. Epub 2016 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验