Zhang Pei, Cootes Timothy F
Imaging Sciences, School of Cancer and Enabling Sciences, The University of Manchester, UK.
Inf Process Med Imaging. 2011;22:636-47. doi: 10.1007/978-3-642-22092-0_52.
Groupwise non-rigid image registration plays an important role in medical image analysis. As local optimisation is largely used in such techniques, a good initialisation is required to avoid local minima. Although the traditional approach to initialisation--affine transformation--generally works well, recent studies have shown that it is inadequate when registering images of complex structures. In this paper we present a more sophisticated method that uses the sparse matches of a parts+geometry model as the initialisation. The choice of parts is made by a voting scheme. We generate a large number of candidate parts, randomly construct many different parts+geometry models and then use the models to select the parts with good localisability. We show that the algorithm can achieve better results than the state of the art on three different datasets of increasing difficulty. We also show that dense mesh models constructed during the groupwise registration process can be used to accurately annotate new images.
逐组非刚性图像配准在医学图像分析中起着重要作用。由于此类技术大量使用局部优化,因此需要良好的初始化以避免局部最小值。尽管传统的初始化方法——仿射变换——通常效果良好,但最近的研究表明,在配准复杂结构的图像时它并不足够。在本文中,我们提出了一种更复杂的方法,该方法使用部件+几何模型的稀疏匹配作为初始化。部件的选择通过投票方案进行。我们生成大量候选部件,随机构建许多不同的部件+几何模型,然后使用这些模型选择具有良好可定位性的部件。我们表明,该算法在三个难度逐渐增加的不同数据集上能够取得比现有技术更好的结果。我们还表明,在逐组配准过程中构建的密集网格模型可用于准确标注新图像。