Kadoury Samuel, Paragios Nikos
Philips Research North America, Briarcliff Manor, NY, USA.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):579-86. doi: 10.1007/978-3-642-15711-0_72.
In this paper we introduce a novel approach for inferring articulated spine models from images. A low-dimensional manifold embedding is created from a training set of prior mesh models to establish the patterns of global shape variations. Local appearance is captured from neighborhoods in the manifold once the overall representation converges. Inference with respect to the manifold and shape parameters is performed using a Markov Random Field (MRF). Singleton and pairwise potentials measure the support from the data and shape coherence from neighboring models respectively, while higher-order cliques encode geometrical modes of variation for local vertebra shape warping. Optimization of model parameters is achieved using efficient linear programming and duality. The resulting model is geometrically intuitive, captures the statistical distribution of the underlying manifold and respects image support in the spatial domain. Experimental results on spinal column geometry estimation from CT demonstrate the approach's potential.
在本文中,我们介绍了一种从图像推断关节式脊柱模型的新方法。从先前网格模型的训练集中创建一个低维流形嵌入,以建立全局形状变化的模式。一旦整体表示收敛,就从流形中的邻域捕获局部外观。使用马尔可夫随机场(MRF)对流形和形状参数进行推断。单例势和成对势分别测量来自数据的支持和相邻模型的形状一致性,而高阶团则编码局部椎骨形状变形的几何变化模式。使用高效的线性规划和对偶性实现模型参数的优化。所得模型在几何上直观,捕获了基础流形的统计分布,并在空间域中尊重图像支持。从CT进行脊柱几何估计的实验结果证明了该方法的潜力。