Missouri Spine Center, University of Missouri, Columbia, MO, USA.
Spine (Phila Pa 1976). 2011 Mar 15;36(6):454-62. doi: 10.1097/BRS.0b013e3181d449ec.
Biomechanical analysis of bioactive cements augmenting pedicle screw resistance to loosening in osteoporotic synthetic bone.
To simulate in vivo loading-loosening of pedicle screws in osteoporotic vertebrae; and to compare biomechanical efficacy of the following bioactive cements: calcium phosphate (CP), calcium sulfate (CS), and proprietary mixture (M).
Pedicle screw instrumentation in osteoporotic spines is limited by poor bone-screw interface strength, resulting in screw loosening fixation failure. Previous in vivo studies evaluated augmented pedicle screw resistance to pure pullout, not simulating in vivo loading/failure.
A pedicle screw-instrumented osteoporotic thoracic vertebra subjected to combined pullout, transverse, moment loading was simulated. Unconstrained 3-dimensional screw motion relative to vertebra was optically measured during quasi-static, and dynamic loading.
Augmented groups (CP, CS, M) produced (P < 8.0E-07) higher quasi-static failure initiation force (61.2,45.6, 40.3 N) than those by the nonaugmented group (21.0 N), with no significant difference in small screw displacement up to these loads. Nonaugmented screw motion after failure initiation was primarily rotation (toggle-migration) with minimal pullout until the screw tip contacted the superior endplate, followed by more prominent screw pullout. Augmented screw motion (with cement remaining intact on screw) was similar, but with eventual bone fracture anterior to the pedicle region. Dynamic loading produced similar failure initiation force and screw motion.
We believe our test protocol produced screw loosening failure similar to that observed clinically, and that it has the ability to detect differences in failure initiation force and failure modes to compare short-term efficacy of screw augmentation techniques. All cements improved screw resistance to failure. The CP > CS > M failure initiation force (P < 0.006) was because of differences in cement distribution. Animal studies may be required to characterize the remodeling activity of bioactive cements and their longer term efficacies.
生物活性水泥增强骨质疏松合成骨中椎弓根螺钉松动阻力的生物力学分析。
模拟骨质疏松椎体内椎弓根螺钉的体内加载-松动;比较以下生物活性水泥的生物力学效果:磷酸钙(CP)、硫酸钙(CS)和专有混合物(M)。
骨质疏松脊柱中的椎弓根螺钉固定受螺钉-骨界面强度差的限制,导致螺钉松动固定失败。以前的体内研究评估了增强的椎弓根螺钉对纯拔出的阻力,而没有模拟体内加载/失效。
模拟了骨质疏松胸椎椎弓根螺钉受联合拔出、横向、力矩加载的影响。在准静态和动态加载过程中,通过光学测量椎骨上椎弓根螺钉相对无约束的 3 维运动。
增强组(CP、CS、M)的准静态起始失效力(61.2、45.6、40.3 N)明显高于非增强组(21.0 N)(P<8.0E-07),在这些载荷下,小螺钉位移没有显著差异。起始失效后,非增强螺钉的运动主要是旋转(摆动迁移),拔出很少,直到螺钉尖端接触到上终板,然后是更明显的螺钉拔出。增强螺钉的运动(螺钉上的水泥保持完整)类似,但最终在椎弓根区域前发生骨骨折。动态加载产生了类似的起始失效力和螺钉运动。
我们相信我们的测试方案产生了类似于临床上观察到的螺钉松动失效,并且它有能力检测失效起始力和失效模式的差异,以比较螺钉增强技术的短期效果。所有水泥都提高了螺钉的抗失效能力。CP>CS>M 的起始失效力(P<0.006)是由于水泥分布的差异。可能需要进行动物研究来描述生物活性水泥的重塑活性及其更长期的效果。