Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
Nature. 2010 Oct 28;467(7319):1123-7. doi: 10.1038/nature09473. Epub 2010 Sep 29.
Semaphorins and their receptor plexins constitute a pleiotropic cell-signalling system that is used in a wide variety of biological processes, and both protein families have been implicated in numerous human diseases. The binding of soluble or membrane-anchored semaphorins to the membrane-distal region of the plexin ectodomain activates plexin's intrinsic GTPase-activating protein (GAP) at the cytoplasmic region, ultimately modulating cellular adhesion behaviour. However, the structural mechanism underlying the receptor activation remains largely unknown. Here we report the crystal structures of the semaphorin 6A (Sema6A) receptor-binding fragment and the plexin A2 (PlxnA2) ligand-binding fragment in both their pre-signalling (that is, before binding) and signalling (after complex formation) states. Before binding, the Sema6A ectodomain was in the expected 'face-to-face' homodimer arrangement, similar to that adopted by Sema3A and Sema4D, whereas PlxnA2 was in an unexpected 'head-on' homodimer arrangement. In contrast, the structure of the Sema6A-PlxnA2 signalling complex revealed a 2:2 heterotetramer in which the two PlxnA2 monomers dissociated from one another and docked onto the top face of the Sema6A homodimer using the same interface as the head-on homodimer, indicating that plexins undergo 'partner exchange'. Cell-based activity measurements using mutant ligands/receptors confirmed that the Sema6A face-to-face dimer arrangement is physiologically relevant and is maintained throughout signalling events. Thus, homodimer-to-heterodimer transitions of cell-surface plexin that result in a specific orientation of its molecular axis relative to the membrane may constitute the structural mechanism by which the ligand-binding 'signal' is transmitted to the cytoplasmic region, inducing GAP domain rearrangements and activation.
信号蛋白 semaphorins 和它们的受体 plexins 构成了一个多功能的细胞信号系统,该系统在多种生物过程中被使用,这两个蛋白家族都与许多人类疾病有关。可溶性或膜锚定的 semaphorins 与 plexin 细胞外域的膜远区结合,激活质膜区域内 plexin 的固有 GTP 酶激活蛋白 (GAP),最终调节细胞黏附行为。然而,受体激活的结构机制在很大程度上仍然未知。在这里,我们报告了 semaphorin 6A (Sema6A) 受体结合片段和 plexin A2 (PlxnA2) 配体结合片段的晶体结构,包括它们的预信号(即结合前)和信号(复合物形成后)状态。在结合之前,Sema6A 细胞外域处于预期的“面对面”同源二聚体排列,类似于 Sema3A 和 Sema4D 所采用的排列,而 PlxnA2 则处于意想不到的“头对头”同源二聚体排列。相比之下,Sema6A-PlxnA2 信号复合物的结构揭示了一个 2:2 的异四聚体,其中两个 PlxnA2 单体彼此解离,并使用与“头对头”同源二聚体相同的界面,对接在 Sema6A 同源二聚体的顶部,表明 plexins 发生“伴侣交换”。使用突变配体/受体的细胞活性测量证实,Sema6A 的面对面二聚体排列在生理上是相关的,并在整个信号事件中得以维持。因此,细胞表面 plexin 的同源二聚体到异源二聚体的转变,导致其分子轴相对于膜的特定取向,可能构成了配体结合“信号”传递到质膜区域、诱导 GAP 结构域重排和激活的结构机制。