Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
Nature. 2010 Oct 28;467(7319):1118-22. doi: 10.1038/nature09468. Epub 2010 Sep 26.
Cell-cell signalling of semaphorin ligands through interaction with plexin receptors is important for the homeostasis and morphogenesis of many tissues and is widely studied for its role in neural connectivity, cancer, cell migration and immune responses. SEMA4D and Sema6A exemplify two diverse vertebrate, membrane-spanning semaphorin classes (4 and 6) that are capable of direct signalling through members of the two largest plexin classes, B and A, respectively. In the absence of any structural information on the plexin ectodomain or its interaction with semaphorins the extracellular specificity and mechanism controlling plexin signalling has remained unresolved. Here we present crystal structures of cognate complexes of the semaphorin-binding regions of plexins B1 and A2 with semaphorin ectodomains (human PLXNB1(1-2)-SEMA4D(ecto) and murine PlxnA2(1-4)-Sema6A(ecto)), plus unliganded structures of PlxnA2(1-4) and Sema6A(ecto). These structures, together with biophysical and cellular assays of wild-type and mutant proteins, reveal that semaphorin dimers independently bind two plexin molecules and that signalling is critically dependent on the avidity of the resulting bivalent 2:2 complex (monomeric semaphorin binds plexin but fails to trigger signalling). In combination, our data favour a cell-cell signalling mechanism involving semaphorin-stabilized plexin dimerization, possibly followed by clustering, which is consistent with previous functional data. Furthermore, the shared generic architecture of the complexes, formed through conserved contacts of the amino-terminal seven-bladed β-propeller (sema) domains of both semaphorin and plexin, suggests that a common mode of interaction triggers all semaphorin-plexin based signalling, while distinct insertions within or between blades of the sema domains determine binding specificity.
信号素配体通过与丛蛋白受体的细胞间相互作用进行细胞间信号传递对于许多组织的内稳态和形态发生至关重要,并且因其在神经连接、癌症、细胞迁移和免疫反应中的作用而被广泛研究。SEMA4D 和 Sema6A 是两种不同的脊椎动物跨膜信号素类(4 类和 6 类)的代表,它们能够分别通过两个最大的丛蛋白类(B 类和 A 类)的成员进行直接信号传递。在没有关于丛蛋白外显子或其与信号素相互作用的任何结构信息的情况下,外源性特异性和控制丛蛋白信号传递的机制仍然没有得到解决。在这里,我们展示了同源复合物的晶体结构 plexin B1 和 A2 的信号素结合区域与信号素外显子(人 PLXNB1(1-2)-SEMA4D(ecto)和鼠 PlxnA2(1-4)-Sema6A(ecto)),加上未配体结合的 PlxnA2(1-4)和 Sema6A(ecto)结构。这些结构,以及野生型和突变蛋白的生物物理和细胞测定,揭示了信号素二聚体独立地结合两个丛蛋白分子,并且信号传递严重依赖于由此产生的二价 2:2 复合物的亲合力(单体信号素结合丛蛋白但未能触发信号传递)。结合起来,我们的数据支持一种涉及信号素稳定的丛蛋白二聚化的细胞间信号传递机制,可能随后是聚类,这与以前的功能数据一致。此外,复合物的共享通用结构,通过信号素和丛蛋白的氨基末端七叶状β-螺旋桨(sema)结构域的保守接触形成,表明触发所有信号素-丛蛋白基信号传递的共同作用模式,而 sema 结构域的叶片内或叶片之间的特定插入决定了结合特异性。