Suppr超能文献

用于 pH 传感的高度非平面树枝状卟啉:卟啉单阳离子的观察。

Highly non-planar dendritic porphyrin for pH sensing: observation of porphyrin monocation.

机构信息

Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

出版信息

Inorg Chem. 2010 Nov 1;49(21):9909-20. doi: 10.1021/ic100968p.

Abstract

Metal-free porphyrin-dendrimers provide a convenient platform for the construction of membrane-impermeable ratiometric probes for pH measurements in compartmentalized biological systems. In all previously reported molecules, electrostatic stabilization (shielding) of the core porphyrin by peripheral negative charges (carboxylates) was required to shift the intrinsically low porphyrin protonation pK(a)'s into the physiological pH range (pH 6-8). However, binding of metal cations (e.g., K(+), Na(+), Ca(2+), Mg(2+)) by the carboxylate groups on the dendrimer could affect the protonation behavior of such probes in biological environments. Here we present a dendritic pH nanoprobe based on a highly non-planar tetraaryltetracyclohexenoporphyrin (Ar(4)TCHP), whose intrinsic protonation pK(a)'s are significantly higher than those of regular tetraarylporphyrins, thereby eliminating the need for electrostatic core shielding. The porphyrin was modified with eight Newkome-type dendrons and PEGylated at the periphery, rendering a neutral water-soluble probe (TCHpH), suitable for measurements in the physiological pH range. The protonation of TCHpH could be followed by absorption (e.g., ε(Soret)(dication)∼270,000 M(-1) cm(-1)) or by fluorescence. Unlike most tetraarylporphyrins, TCHpH is protonated in two distinct steps (pK(a)'s 7.8 and 6.0). In the region between the pK(a)'s, an intermediate species with a well-defined spectroscopic signature, presumably a TCHpH monocation, could be observed in the mixture. The performance of TCHpH was evaluated by pH gradient measurements in large unilamellar vesicles. The probe was retained inside the vesicles and did not pass through and/or interact with vesicle membranes, proving useful for quantification of proton transport across phospholipid bilayers. To interpret the protonation behavior of TCHpH we developed a model relating structural changes on the porphyrin macrocycle upon protonation to its basicity. The model was validated by density functional theory (DFT) calculations performed on a planar and non-planar porphyrin, making it possible to rationalize higher protonation pK(a)'s of non-planar porphyrins as well as the easier observation of their monocations.

摘要

无金属卟啉-树状大分子为构建分隔生物体系中 pH 值比率测量的膜不可渗透的比率探针提供了一个方便的平台。在所有之前报道的分子中,通过外围负电荷(羧酸根)静电稳定(屏蔽)核心卟啉将内在低卟啉质子化 pK(a) '移到生理 pH 范围(pH 6-8)是必需的。然而,树状大分子上的羧酸根与金属阳离子(例如 K(+)、Na(+)、Ca(2+)、Mg(2+))的结合可能会影响此类探针在生物环境中的质子化行为。在此,我们提出了一种基于高度非平面四芳基四环己烯卟啉(Ar(4)TCHP)的树状 pH 纳米探针,其内在质子化 pK(a) '显著高于常规四芳基卟啉,从而消除了对静电核心屏蔽的需求。卟啉用八个 Newkome 型树枝状大分子修饰,并在其外围 PEG 化,得到一种中性水溶性探针(TCHpH),适用于生理 pH 范围内的测量。TCHpH 的质子化可以通过吸收(例如,ε(Soret)(二阳离子)∼270,000 M(-1) cm(-1))或荧光来跟踪。与大多数四芳基卟啉不同,TCHpH 在两个不同的步骤中质子化(pK(a) '分别为 7.8 和 6.0)。在 pK(a) '之间的区域中,可以观察到混合物中具有明确定征光谱特征的中间物种,可能是 TCHpH 一阳离子。通过在大单室囊泡中进行 pH 梯度测量来评估 TCHpH 的性能。探针保留在囊泡内,不穿透和/或与囊泡膜相互作用,这对于定量测量质子穿过磷脂双层的运输很有用。为了解释 TCHpH 的质子化行为,我们开发了一个将卟啉大环上的质子化引起的结构变化与碱性联系起来的模型。该模型通过在平面和非平面卟啉上进行密度泛函理论(DFT)计算进行了验证,使得可以合理化非平面卟啉的更高质子化 pK(a) '以及更容易观察它们的一阳离子。

相似文献

1
Highly non-planar dendritic porphyrin for pH sensing: observation of porphyrin monocation.
Inorg Chem. 2010 Nov 1;49(21):9909-20. doi: 10.1021/ic100968p.
2
3
Precise detection of pH inside large unilamellar vesicles using membrane-impermeable dendritic porphyrin-based nanoprobes.
Anal Biochem. 2009 May 15;388(2):296-305. doi: 10.1016/j.ab.2009.02.023. Epub 2009 Feb 25.
4
Intramolecular axial ligation of zinc porphyrin cores with triazole links within dendrimers.
Chemistry. 2009 Mar 2;15(11):2617-24. doi: 10.1002/chem.200801557.
5
Probing stepwise complexation in phenylazomethine dendrimers by a metallo-porphyrin core.
J Am Chem Soc. 2005 Oct 12;127(40):13896-905. doi: 10.1021/ja0524797.
6
Electrostatic core shielding in dendritic polyglutamic porphyrins.
Chemistry. 2000 Jul 3;6(13):2456-61. doi: 10.1002/1521-3765(20000703)6:13<2456::aid-chem2456>3.0.co;2-p.
7
Influence of nonplanarity and extended conjugation on porphyrin basicity.
Inorg Chem. 2002 Dec 30;41(26):6944-6. doi: 10.1021/ic0260522.
8
Spectrofluorimetric study of porphyrin incorporation into membrane models--evidence for pH effects.
Biochim Biophys Acta. 1986 May 28;857(2):238-50. doi: 10.1016/0005-2736(86)90352-4.
9
Protonation of porphyrin in iron-free cytochrome c: spectral properties of monocation free base porphyrin, a charge analogue of ferric heme.
Biospectroscopy. 1999;5(3):141-50. doi: 10.1002/(SICI)1520-6343(1999)5:3<141::AID-BSPY4>3.0.CO;2-J.
10
Unusual aryl-porphyrin rotational barriers in peripherally crowded porphyrins.
Inorg Chem. 2003 Apr 7;42(7):2227-41. doi: 10.1021/ic010958a.

引用本文的文献

1
Unusual Reactivity and Metal Affinity of Water-Soluble Dipyrrins.
Inorg Chem. 2022 Aug 15;61(32):12746-12758. doi: 10.1021/acs.inorgchem.2c01834. Epub 2022 Aug 2.
2
Understanding Hyperporphyrin Spectra: TDDFT Calculations on Diprotonated Tetrakis(-aminophenyl)porphyrin.
J Phys Chem A. 2021 Nov 25;125(46):9953-9961. doi: 10.1021/acs.jpca.1c06621. Epub 2021 Oct 29.
3
Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications.
Chem Rev. 2020 Nov 25;120(22):12357-12489. doi: 10.1021/acs.chemrev.0c00451. Epub 2020 Nov 4.
5
Porphyrins as Colorimetric and Photometric Biosensors in Modern Bioanalytical Systems.
Chembiochem. 2020 Jul 1;21(13):1793-1807. doi: 10.1002/cbic.202000067. Epub 2020 Mar 30.
6
Molecular Engineering of Free-Base Porphyrins as Ligands-The N-H⋅⋅⋅X Binding Motif in Tetrapyrroles.
Angew Chem Int Ed Engl. 2019 Jan 8;58(2):418-441. doi: 10.1002/anie.201806281. Epub 2018 Nov 5.
7
Structural Modulation of Chromic Response: Effects of Binding-Site Blocking in a Conjugated Calix[4]pyrrole Chromophore.
ChemistryOpen. 2018 Apr 20;7(5):323-335. doi: 10.1002/open.201800005. eCollection 2018 May.
9
Long-wavelength analyte-sensitive luminescent probes and optical (bio)sensors.
Methods Appl Fluoresc. 2015 Dec;3(4). doi: 10.1088/2050-6120/3/4/042005. Epub 2015 Oct 22.

本文引用的文献

1
Dendritic phosphorescent probes for oxygen imaging in biological systems.
ACS Appl Mater Interfaces. 2009 Jun;1(6):1292-304. doi: 10.1021/am9001698.
2
Dendrimer porphyrins and phthalocyanines.
Chem Rev. 2009 Nov;109(11):6047-76. doi: 10.1021/cr900186c.
3
Crystal structures and properties of a monoprotonated porphyrin.
Chem Commun (Camb). 2009 Sep 7(33):4994-6. doi: 10.1039/b910077f. Epub 2009 Jul 13.
4
Precise detection of pH inside large unilamellar vesicles using membrane-impermeable dendritic porphyrin-based nanoprobes.
Anal Biochem. 2009 May 15;388(2):296-305. doi: 10.1016/j.ab.2009.02.023. Epub 2009 Feb 25.
5
Effects of structural deformations on optical properties of tetrabenzoporphyrins: free-bases and Pd complexes.
J Phys Chem A. 2008 Aug 21;112(33):7723-33. doi: 10.1021/jp8043626. Epub 2008 Jul 30.
6
Oxygen microscopy by two-photon-excited phosphorescence.
Chemphyschem. 2008 Aug 25;9(12):1673-9. doi: 10.1002/cphc.200800296.
7
Selective transport of water mediated by porous dendritic dipeptides.
J Am Chem Soc. 2007 Sep 26;129(38):11698-9. doi: 10.1021/ja076066c. Epub 2007 Sep 5.
8
Evidence for tetraphenylporphyrin monoacids.
Inorg Chem. 2007 Jul 23;46(15):5979-88. doi: 10.1021/ic0703373. Epub 2007 Jun 23.
9
Synergism of porphyrin-core saddling and twisting of meso-aryl substituents.
J Phys Chem A. 2006 Apr 20;110(15):5180-90. doi: 10.1021/jp060931i.
10
Synthesis of symmetrical tetraaryltetranaphtho[2,3]porphyrins.
J Org Chem. 2005 Jun 10;70(12):4617-28. doi: 10.1021/jo047741t.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验