Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria.
Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany.
Chem Rev. 2020 Nov 25;120(22):12357-12489. doi: 10.1021/acs.chemrev.0c00451. Epub 2020 Nov 4.
This is the first comprehensive review on methods and materials for use in optical sensing of pH values and on applications of such sensors. The Review starts with an introduction that contains subsections on the definition of the pH value, a brief look back on optical methods for sensing of pH, on the effects of ionic strength on pH values and p values, on the selectivity, sensitivity, precision, dynamic ranges, and temperature dependence of such sensors. Commonly used optical sensing schemes are covered in a next main chapter, with subsections on methods based on absorptiometry, reflectometry, luminescence, refractive index, surface plasmon resonance, photonic crystals, turbidity, mechanical displacement, interferometry, and solvatochromism. This is followed by sections on absorptiometric and luminescent molecular probes for use pH in sensors. Further large sections cover polymeric hosts and supports, and methods for immobilization of indicator dyes. Further and more specific sections summarize the state of the art in materials with dual functionality (indicator and host), nanomaterials, sensors based on upconversion and 2-photon absorption, multiparameter sensors, imaging, and sensors for extreme pH values. A chapter on the many sensing formats has subsections on planar, fiber optic, evanescent wave, refractive index, surface plasmon resonance and holography based sensor designs, and on distributed sensing. Another section summarizes selected applications in areas, such as medicine, biology, oceanography, bioprocess monitoring, corrosion studies, on the use of pH sensors as transducers in biosensors and chemical sensors, and their integration into flow-injection analyzers, microfluidic devices, and lab-on-a-chip systems. An extra section is devoted to current challenges, with subsections on challenges of general nature and those of specific nature. A concluding section gives an outlook on potential future trends and perspectives.
这是第一篇关于用于光学 pH 值传感的方法和材料的全面综述,以及此类传感器的应用。综述首先介绍了 pH 值的定义,简要回顾了光学 pH 传感方法、离子强度对 pH 值和 p 值的影响、此类传感器的选择性、灵敏度、精度、动态范围和温度依赖性,接着介绍了常用的光学传感方案,分为基于吸光度法、反射率法、发光法、折射率法、表面等离子体共振法、光子晶体法、浊度法、机械位移法、干涉法和溶剂化变色法的方法,然后介绍了用于传感器的吸收和发光分子探针,进一步分为聚合物主体和支持物以及指示剂染料固定化方法的章节,接下来更详细地总结了具有双重功能(指示剂和主体)的材料、纳米材料、基于上转换和双光子吸收的传感器、多参数传感器、成像和极端 pH 值传感器的最新进展,在关于多种传感格式的章节中,分为平面、光纤、消逝波、折射率、表面等离子体共振和全息传感器设计以及分布式传感的子章节,还有一个章节总结了在医学、生物学、海洋学、生物过程监测、腐蚀研究等领域的一些应用,以及 pH 传感器作为生物传感器和化学传感器中的换能器的应用,及其在流动注射分析、微流控装置和片上实验室系统中的集成,专门有一节介绍了当前的挑战,分为一般性挑战和特定性挑战的子章节,最后一节展望了潜在的未来趋势和前景。