Department of Chemistry, Moscow State University, Moscow 117899, Russia.
Inorg Chem. 2022 Aug 15;61(32):12746-12758. doi: 10.1021/acs.inorgchem.2c01834. Epub 2022 Aug 2.
Dipyrrins are a versatile class of organic ligands capable of fluorogenic complexation of metal ions. The primary goal of our study was to evaluate dipyrrins functionalized with ester and amide groups in 2,2'-positions in sensing applications. While developing the synthesis, we found that 3,3',4,4'-tetraalkyldipyrrins 2,2'-diesters as well as 2,2'-diamides can undergo facile addition of water at the -bridge, transforming into colorless -hydroxydipyrromethanes. Spectroscopic and computational investigation revealed that this transformation proceeds via dipyrrin cations, which exist in equilibrium with the hydroxydipyrromethanes. While trace amounts of acid favor conversion of dipyrrins to hydroxydipyrromethanes, excess acid shifts the equilibrium toward the cations. Similarly, the presence of Zn facilitates elimination of water from hydroxydipyrromethanes with chromogenic regeneration of the dipyrrin system. In organic solutions in the presence of Zn, dipyrrin-2,2'-diesters exist as mixtures of -(LZnX) and -(LZn) complexes. In LZn, the dipyrrin ligands are oriented in a nonorthogonal fashion, causing strong exciton coupling. In aqueous solutions, dipyrrins bind Zn in a 1:1 stoichiometry, forming -dipyrrinates (LZnX). Unexpectedly, dipyrrins with more electron-rich 2,2'-carboxamide groups revealed ∼20-fold lower affinity for Zn than the corresponding 2,2'-diesters. Density Functional Theory (DFT) calculations with explicit inclusion of water reproduced the observed trends and allowed us to trace the low affinity of the dipyrrin-diamides to the stabilization of the corresponding free bases via hydrogen bonding with water molecules. Overall, our results reveal unusual trends in the reactivity of dipyrrins and provide clues for the design of dipyrrin-based sensors for biological applications.
二吡咯化合物是一类多功能的有机配体,能够与金属离子形成荧光配合物。我们研究的主要目标是评估 2,2'-位酯化和酰胺化的二吡咯化合物在传感应用中的性能。在合成过程中,我们发现 3,3',4,4'-四烷基二吡咯 2,2'-二酯以及 2,2'-二酰胺可以在桥位上轻易地与水发生加成反应,转化为无色的β-羟基二吡咯甲烷。光谱和计算研究表明,这种转化是通过二吡咯阳离子进行的,其与β-羟基二吡咯甲烷处于平衡状态。虽然痕量的酸有利于二吡咯转化为β-羟基二吡咯甲烷,但过量的酸会使平衡向阳离子方向移动。同样,锌的存在促进了β-羟基二吡咯甲烷的脱水反应,使二吡咯体系发生显色再生。在锌存在下的有机溶剂中,二吡咯-2,2'-二酯以 -(LZnX) 和 -(LZn) 配合物的混合物形式存在。在 LZn 中,二吡咯配体呈非正交排列,导致强激子耦合。在水溶液中,二吡咯以 1:1 的化学计量比与锌配位,形成 -二吡咯酸盐 (LZnX)。出人意料的是,具有更多富电子 2,2'-羧酰胺基团的二吡咯对锌的亲和力比相应的 2,2'-二酯低约 20 倍。考虑了水分子的密度泛函理论 (DFT) 计算再现了观察到的趋势,并使我们能够通过氢键与水分子稳定相应的游离碱来追踪二吡咯二酰胺对锌亲和力低的原因。总的来说,我们的结果揭示了二吡咯化合物反应性的异常趋势,并为基于二吡咯的生物应用传感器的设计提供了线索。