Chiba Yasutaka
Department of Environmental Medicine and Behavioral Science, Kinki University School of Medicine, Osakasayama, Osaka, Japan.
Biom J. 2010 Oct;52(5):628-37. doi: 10.1002/bimj.201000051.
Adjusting for intermediate variables is a common analytic strategy for estimating a direct effect. Even if the total effect is unconfounded, the direct effect is not identified when unmeasured variables affect the intermediate and outcome variables. Therefore, some researchers presented bounds on the controlled direct effects via linear programming. They applied a monotonic assumption about treatment and intermediate variables and a no-interaction assumption to derive narrower bounds. Here, we improve their bounds without using linear programming and hence derive a bound under the monotonic assumption about an intermediate variable only. To improve the bounds, we further introduce the monotonic assumption about confounders. While previous studies assumed that an outcome is a binary variable, we do not make that assumption. The proposed bounds are illustrated using two examples from randomized trials.
调整中间变量是估计直接效应的一种常见分析策略。即使总效应不存在混杂,但当未测量变量影响中间变量和结果变量时,直接效应也无法识别。因此,一些研究人员通过线性规划给出了受控直接效应的界限。他们对处理变量和中间变量应用了单调假设以及无交互作用假设,以得出更窄的界限。在此,我们不使用线性规划来改进他们的界限,从而仅在关于中间变量的单调假设下得出一个界限。为了改进界限,我们进一步引入了关于混杂因素的单调假设。虽然先前的研究假设结果是一个二元变量,但我们不做此假设。通过随机试验的两个例子说明了所提出的界限。