Suppr超能文献

存在混杂中间变量时直接效应的界限。

Bounds on direct effects in the presence of confounded intermediate variables.

作者信息

Cai Zhihong, Kuroki Manabu, Pearl Judea, Tian Jin

机构信息

Department of Biostatistics, Kyoto University School of Public Health, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.

Department of Systems Innovation, Osaka University, 1-3, Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.

出版信息

Biometrics. 2008 Sep;64(3):695-701. doi: 10.1111/j.1541-0420.2007.00949.x. Epub 2007 Dec 5.

Abstract

This article considers the problem of estimating the average controlled direct effect (ACDE) of a treatment on an outcome, in the presence of unmeasured confounders between an intermediate variable and the outcome. Such confounders render the direct effect unidentifiable even in cases where the total effect is unconfounded (hence identifiable). Kaufman et al. (2005, Statistics in Medicine 24, 1683-1702) applied a linear programming software to find the minimum and maximum possible values of the ACDE for specific numerical data. In this article, we apply the symbolic Balke-Pearl (1997, Journal of the American Statistical Association 92, 1171-1176) linear programming method to derive closed-form formulas for the upper and lower bounds on the ACDE under various assumptions of monotonicity. These universal bounds enable clinical experimenters to assess the direct effect of treatment from observed data with minimum computational effort, and they further shed light on the sign of the direct effect and the accuracy of the assessments.

摘要

本文探讨了在中间变量与结果之间存在未测量混杂因素的情况下,估计治疗对结果的平均受控直接效应(ACDE)的问题。即使在总效应无混杂(因此可识别)的情况下,此类混杂因素也会使直接效应无法识别。考夫曼等人(2005年,《医学统计学》24卷,第1683 - 1702页)应用线性规划软件来确定特定数值数据下ACDE的最小和最大可能值。在本文中,我们应用符号化的巴尔克 - 珀尔(1997年,《美国统计协会杂志》92卷,第1171 - 1176页)线性规划方法,在各种单调性假设下推导出ACDE上下界的闭式公式。这些通用界使临床实验者能够以最小的计算量从观测数据评估治疗的直接效应,并且进一步揭示直接效应的符号以及评估的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验