Suppr超能文献

网络吸附:超临界气体在多孔固体中吸附和储存的热力学框架。

Net adsorption: a thermodynamic framework for supercritical gas adsorption and storage in porous solids.

机构信息

Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.

出版信息

Langmuir. 2010 Nov 16;26(22):17013-23. doi: 10.1021/la102186q. Epub 2010 Oct 1.

Abstract

The thermodynamic treatment of adsorption phenomena is based on the Gibbs dividing surface, which is conceptually clear for a flat surface. On a flat surface, the primary extensive property is the area of the solid. As applications became more significant, necessitating microporous solids, early researchers such as McBain and Coolidge implemented the Gibbs definition by invoking a reference state for microporous solids. The mass of solid is used as a primary extensive property because surface area loses its physical meaning for microporous solids. A reference state is used to fix the hypothetical hyperdividing surface typically using helium as a probe molecule, resulting in the commonly used excess adsorption; experimentalists measure this reference state for each new sample. Molecular simulations, however, provide absolute adsorption. Theoreticians perform helium simulations to convert absolute to excess adsorption, mimicking experiments for comparison. This current structure of adsorption thermodynamics is rigorous (if the conditions for reference state helium measurements are completely disclosed) but laborious. In addition, many studies show that helium, or any other probe molecule for that matter, does adsorb, albeit to a small extent. We propose a novel thermodynamic framework, net adsorption, which completely circumvents the use of probe molecules to fix the reference state for each microporous sample. Using net adsorption, experimentalists calibrate their apparatus only once without any sample in the system. Theoreticians can directly calculate net adsorption; no additional simulations with a probe gas are necessary. Net adsorption also provides a direct indication of the density enhancement achieved (by using an adsorbent) over simple compression for gas (e.g., hydrogen) storage applications.

摘要

吸附现象的热力学处理基于 Gibbs 分割面,对于平面来说,这个概念非常清晰。在平面上,主要的广延性质是固体的面积。随着应用变得更加重要,需要微孔固体,早期的研究人员,如 McBain 和 Coolidge,通过为微孔固体引入参考状态来实现 Gibbs 定义。固体的质量被用作主要的广延性质,因为对于微孔固体来说,表面积失去了物理意义。参考状态用于固定假设的超分割面,通常使用氦气作为探针分子,从而得到常用的过剩吸附;实验人员为每个新样品测量这个参考状态。然而,分子模拟提供了绝对吸附。理论学家进行氦气模拟以将绝对吸附转换为过剩吸附,从而模拟实验进行比较。这种当前的吸附热力学结构是严格的(如果完全披露了参考状态氦气测量的条件),但很繁琐。此外,许多研究表明,氦气或任何其他探针分子确实会吸附,尽管程度很小。我们提出了一种新的热力学框架,净吸附,它完全避免了使用探针分子来固定每个微孔样品的参考状态。使用净吸附,实验人员只需在系统中没有样品的情况下校准一次仪器。理论学家可以直接计算净吸附;不需要用探针气体进行额外的模拟。净吸附还为气体(例如氢气)存储应用中的简单压缩提供了密度增强的直接指示(通过使用吸附剂)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验