Suppr超能文献

用于生物力学生长分析的用户材料子程序自动生成

Automatic generation of user material subroutines for biomechanical growth analysis.

作者信息

Young Jonathan M, Yao Jiang, Ramasubramanian Ashok, Taber Larry A, Perucchio Renato

机构信息

Department of Mechanical Engineering, 409 Hopeman Engineering Building, University of Rochester, Rochester, NY 14627, USA.

出版信息

J Biomech Eng. 2010 Oct;132(10):104505. doi: 10.1115/1.4002375.

Abstract

The analysis of the biomechanics of growth and remodeling in soft tissues requires the formulation of specialized pseudoelastic constitutive relations. The nonlinear finite element analysis package ABAQUS allows the user to implement such specialized material responses through the coding of a user material subroutine called UMAT. However, hand coding UMAT subroutines is a challenge even for simple pseudoelastic materials and requires substantial time to debug and test the code. To resolve this issue, we develop an automatic UMAT code generation procedure for pseudoelastic materials using the symbolic mathematics package MATHEMATICA and extend the UMAT generator to include continuum growth. The performance of the automatically coded UMAT is tested by simulating the stress-stretch response of a material defined by a Fung-orthotropic strain energy function, subject to uniaxial stretching, equibiaxial stretching, and simple shear in ABAQUS. The MATHEMATICA UMAT generator is then extended to include continuum growth by adding a growth subroutine to the automatically generated UMAT. The MATHEMATICA UMAT generator correctly derives the variables required in the UMAT code, quickly providing a ready-to-use UMAT. In turn, the UMAT accurately simulates the pseudoelastic response. In order to test the growth UMAT, we simulate the growth-based bending of a bilayered bar with differing fiber directions in a nongrowing passive layer. The anisotropic passive layer, being topologically tied to the growing isotropic layer, causes the bending bar to twist laterally. The results of simulations demonstrate the validity of the automatically coded UMAT, used in both standardized tests of hyperelastic materials and for a biomechanical growth analysis.

摘要

软组织生长与重塑的生物力学分析需要制定专门的伪弹性本构关系。非线性有限元分析软件包ABAQUS允许用户通过编写一个名为UMAT的用户材料子程序来实现这种专门的材料响应。然而,即使对于简单的伪弹性材料,手动编写UMAT子程序也是一项挑战,并且需要大量时间来调试和测试代码。为了解决这个问题,我们使用符号数学软件包MATHEMATICA开发了一种用于伪弹性材料的自动UMAT代码生成程序,并将UMAT生成器扩展到包括连续生长。通过在ABAQUS中模拟由Fung正交各向异性应变能函数定义的材料在单轴拉伸、等双轴拉伸和简单剪切下的应力-拉伸响应,测试了自动编码UMAT的性能。然后,通过向自动生成的UMAT添加一个生长子程序,将MATHEMATICA UMAT生成器扩展到包括连续生长。MATHEMATICA UMAT生成器正确地导出了UMAT代码中所需的变量,快速提供了一个即用型的UMAT。反过来,UMAT准确地模拟了伪弹性响应。为了测试生长UMAT,我们模拟了在非生长的被动层中具有不同纤维方向的双层杆基于生长的弯曲。各向异性的被动层在拓扑上与生长的各向同性层相连,导致弯曲的杆横向扭转。模拟结果证明了自动编码的UMAT在超弹性材料的标准化测试和生物力学生长分析中的有效性。

相似文献

1
Automatic generation of user material subroutines for biomechanical growth analysis.
J Biomech Eng. 2010 Oct;132(10):104505. doi: 10.1115/1.4002375.
2
How to implement user-defined fiber-reinforced hyperelastic materials in finite element software.
J Mech Behav Biomed Mater. 2020 Oct;110:103737. doi: 10.1016/j.jmbbm.2020.103737. Epub 2020 May 5.
3
Understanding the deformation gradient in Abaqus and key guidelines for anisotropic hyperelastic user material subroutines (UMATs).
J Mech Behav Biomed Mater. 2022 Feb;126:104940. doi: 10.1016/j.jmbbm.2021.104940. Epub 2021 Dec 2.
5
A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
J Mech Behav Biomed Mater. 2014 Nov;39:48-60. doi: 10.1016/j.jmbbm.2014.06.016. Epub 2014 Jul 11.
6
Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method.
Comput Methods Biomech Biomed Engin. 2016;19(2):188-98. doi: 10.1080/10255842.2015.1006207. Epub 2015 Feb 4.
7
Development and parameter identification of a visco-hyperelastic model for the periodontal ligament.
J Mech Behav Biomed Mater. 2017 Apr;68:210-215. doi: 10.1016/j.jmbbm.2017.01.035. Epub 2017 Jan 31.
8
On implementation of fibrous connective tissues' damage in Abaqus software.
J Biomech. 2023 Aug;157:111736. doi: 10.1016/j.jbiomech.2023.111736. Epub 2023 Jul 21.
9
Anisotropic damage model for collagenous tissues and its application to model fracture and needle insertion mechanics.
Biomech Model Mechanobiol. 2022 Dec;21(6):1-16. doi: 10.1007/s10237-022-01624-y. Epub 2022 Sep 3.
10
A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression.
J Mech Behav Biomed Mater. 2017 Jan;65:213-223. doi: 10.1016/j.jmbbm.2016.08.028. Epub 2016 Aug 26.

引用本文的文献

1
A universal material model subroutine for soft matter systems.
Eng Comput. 2025;41(2):905-927. doi: 10.1007/s00366-024-02031-w. Epub 2024 Sep 18.
3
How mechanical forces shape the developing eye.
Prog Biophys Mol Biol. 2018 Sep;137:25-36. doi: 10.1016/j.pbiomolbio.2018.01.004. Epub 2018 Feb 9.
4
A new hypothesis for foregut and heart tube formation based on differential growth and actomyosin contraction.
Development. 2017 Jul 1;144(13):2381-2391. doi: 10.1242/dev.145193. Epub 2017 May 19.
5
A computational study of invariant I in a nearly incompressible transversely isotropic model for white matter.
J Biomech. 2017 May 24;57:146-151. doi: 10.1016/j.jbiomech.2017.03.025. Epub 2017 Apr 9.
6
Contraction and stress-dependent growth shape the forebrain of the early chicken embryo.
J Mech Behav Biomed Mater. 2017 Jan;65:383-397. doi: 10.1016/j.jmbbm.2016.08.010. Epub 2016 Aug 15.
7
Why is cytoskeletal contraction required for cardiac fusion before but not after looping begins?
Phys Biol. 2015 Jan 30;12(1):016012. doi: 10.1088/1478-3975/12/1/016012.
8
Bending of the looping heart: differential growth revisited.
J Biomech Eng. 2014 Aug;136(8):0810021-08100215. doi: 10.1115/1.4026645.

本文引用的文献

2
A frame-invariant formulation of Fung elasticity.
J Biomech. 2009 Apr 16;42(6):781-5. doi: 10.1016/j.jbiomech.2009.01.015. Epub 2009 Mar 17.
3
Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents.
Biomech Model Mechanobiol. 2008 Aug;7(4):245-62. doi: 10.1007/s10237-007-0101-2. Epub 2007 Sep 2.
4
Computational modeling of morphogenesis regulated by mechanical feedback.
Biomech Model Mechanobiol. 2008 Apr;7(2):77-91. doi: 10.1007/s10237-007-0077-y. Epub 2007 Feb 21.
5
Biophysical mechanisms of cardiac looping.
Int J Dev Biol. 2006;50(2-3):323-32. doi: 10.1387/ijdb.052045lt.
6
Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
Biomech Model Mechanobiol. 2005 Nov;4(2-3):190-9. doi: 10.1007/s10237-005-0075-x. Epub 2005 Aug 2.
7
Mechanics of the arterial wall: review and directions.
Crit Rev Biomed Eng. 1995;23(1-2):1-162.
8
Stress-dependent finite growth in soft elastic tissues.
J Biomech. 1994 Apr;27(4):455-67. doi: 10.1016/0021-9290(94)90021-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验