Suppr超能文献

收缩和应激依赖性生长塑造了早期鸡胚的前脑。

Contraction and stress-dependent growth shape the forebrain of the early chicken embryo.

作者信息

Garcia Kara E, Okamoto Ruth J, Bayly Philip V, Taber Larry A

机构信息

Department of Biomedical Engineering, Washington University, 1 Brookings Drive, Saint Louis, MO 63130, USA.

Department of Mechanical Engineering and Material Science, Washington University, 1 Brookings Drive, Saint Louis, MO 63130, USA.

出版信息

J Mech Behav Biomed Mater. 2017 Jan;65:383-397. doi: 10.1016/j.jmbbm.2016.08.010. Epub 2016 Aug 15.

Abstract

During early vertebrate development, local constrictions, or sulci, form to divide the forebrain into the diencephalon, telencephalon, and optic vesicles. These partitions are maintained and exaggerated as the brain tube inflates, grows, and bends. Combining quantitative experiments on chick embryos with computational modeling, we investigated the biophysical mechanisms that drive these changes in brain shape. Chemical perturbations of contractility indicated that actomyosin contraction plays a major role in the creation of initial constrictions (Hamburger-Hamilton stages HH11-12), and fluorescent staining revealed that F-actin is circumferentially aligned at all constrictions. A finite element model based on these findings shows that the observed shape changes are consistent with circumferential contraction in these regions. To explain why sulci continue to deepen as the forebrain expands (HH12-20), we speculate that growth depends on wall stress. This idea was examined by including stress-dependent growth in a model with cerebrospinal fluid pressure and bending (cephalic flexure). The results given by the model agree with observed morphological changes that occur in the brain tube under normal and reduced eCSF pressure, quantitative measurements of relative sulcal depth versus time, and previously published patterns of cell proliferation. Taken together, our results support a biphasic mechanism for forebrain morphogenesis consisting of differential contractility (early) and stress-dependent growth (late).

摘要

在早期脊椎动物发育过程中,局部收缩或脑沟形成,将前脑分为间脑、端脑和视泡。随着脑管膨胀、生长和弯曲,这些分隔得以维持并扩大。我们将对鸡胚的定量实验与计算模型相结合,研究了驱动脑形态这些变化的生物物理机制。对收缩性的化学扰动表明,肌动球蛋白收缩在初始收缩(汉堡-汉密尔顿阶段HH11-12)的形成中起主要作用,荧光染色显示F-肌动蛋白在所有收缩处呈周向排列。基于这些发现的有限元模型表明,观察到的形状变化与这些区域的周向收缩一致。为了解释为什么随着前脑扩张(HH12-20)脑沟会持续加深,我们推测生长取决于壁应力。通过在包含脑脊液压力和弯曲(头部弯曲)的模型中纳入应力依赖性生长来检验这一想法。该模型给出的结果与在正常和降低的脑脊髓液压力下脑管中发生的观察到的形态变化、相对脑沟深度随时间的定量测量以及先前发表的细胞增殖模式一致。综上所述,我们的结果支持一种前脑形态发生的双相机制,该机制由差异收缩性(早期)和应力依赖性生长(晚期)组成。

相似文献

7
Cephalic flexure formation in the chick embryo.鸡胚中头曲的形成。
J Exp Zool. 1981 Jun;216(3):399-408. doi: 10.1002/jez.1402160308.
8
Computational and experimental study of the mechanics of embryonic wound healing.胚胎创伤愈合力学的计算与实验研究。
J Mech Behav Biomed Mater. 2013 Dec;28:125-46. doi: 10.1016/j.jmbbm.2013.07.018. Epub 2013 Aug 2.
10
Computational model for early cardiac looping.早期心脏环化的计算模型。
Ann Biomed Eng. 2006 Aug;34(8):1655-69. doi: 10.1007/s10439-005-9021-4.

引用本文的文献

10
Mechanics of cortical folding: stress, growth and stability.皮质折叠的力学:应力、生长与稳定性。
Philos Trans R Soc Lond B Biol Sci. 2018 Sep 24;373(1759):20170321. doi: 10.1098/rstb.2017.0321.

本文引用的文献

2
Forcing cells into shape: the mechanics of actomyosin contractility.迫使细胞变形:肌动球蛋白收缩力的力学。
Nat Rev Mol Cell Biol. 2015 Aug;16(8):486-98. doi: 10.1038/nrm4012. Epub 2015 Jul 1.
3
Architecture and migration of an epithelium on a cylindrical wire.圆柱形金属丝上上皮组织的结构与迁移
Proc Natl Acad Sci U S A. 2015 May 12;112(19):5944-9. doi: 10.1073/pnas.1418857112. Epub 2015 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验