Suppr超能文献

沉默一种假定的内臂动力蛋白重链会导致布氏锥虫鞭毛运动不能。

Silencing of a putative inner arm dynein heavy chain results in flagellar immotility in Trypanosoma brucei.

作者信息

Springer Amy L, Bruhn David F, Kinzel Kathryn W, Rosenthal Noël F, Zukas Randi, Klingbeil Michele M

机构信息

Department of Biology, Amherst College, Amherst, MA, USA.

出版信息

Mol Biochem Parasitol. 2011 Jan;175(1):68-75. doi: 10.1016/j.molbiopara.2010.09.005. Epub 2010 Oct 1.

Abstract

The Trypanosoma brucei flagellum controls motility and is crucial for cell polarity and division. Unique features of trypanosome motility suggest that flagellar beat regulation in this organism is unusual and worthy of study. The flagellar axoneme, required for motility, has a structure that is highly conserved among eukaryotes. Of the several dyneins in the axonemal inner arm complex, dynein f is thought to control flagellar waveform shape. A T. brucei gene predicted to encode the dynein f alpha heavy chain, TbDNAH10, was silenced using RNA interference in procyclic T. brucei cells. This resulted in immotile flagella, showing no movement except for occasional slight twitches at the tips. Cell growth slowed dramatically and cells were found in large clusters. Microscopic analysis of silenced cultures showed many cells with detached flagella, sometimes entangled between multiple cells. DAPI staining showed an increased frequency of mis-positioned kinetoplasts and multinucleate cells, suggesting that these cells experience disruption at an early cell cycle stage, probably secondary to the motility defect. TEM images showed apparently normal axonemes and no discernable defects in inner arm structure. This study demonstrates the use of RNAi as an effective method to study very large genes such as dynein heavy chains (HCs), and the immotility phenotype of these dynein knockdowns suggests that an intact inner arm is necessary for flagellar beating in T. brucei. Since analogous mutants in Chlamydomonas reinhardtii retain motility, this phenotype likely reflects differences in requirements for motility and/or dynein assembly between the two organisms and these comparative studies will help elucidate the mechanisms of flagellar beat regulation.

摘要

布氏锥虫的鞭毛控制着运动,对细胞极性和分裂至关重要。锥虫运动的独特特征表明,该生物体中鞭毛搏动的调节不同寻常,值得研究。运动所需的鞭毛轴丝,其结构在真核生物中高度保守。在轴丝内臂复合体的几种动力蛋白中,动力蛋白f被认为控制着鞭毛波形的形状。利用RNA干扰技术,使布氏锥虫前循环期细胞中一个预测编码动力蛋白fα重链的基因TbDNAH10沉默。这导致鞭毛无法运动,除了偶尔在鞭毛尖端有轻微抽搐外,没有任何运动。细胞生长显著减缓,细胞聚集成大团块。对沉默培养物的显微镜分析显示,许多细胞的鞭毛脱落,有时在多个细胞之间缠绕。DAPI染色显示,动质体定位错误和多核细胞的频率增加,这表明这些细胞在细胞周期早期受到破坏,可能继发于运动缺陷。透射电镜图像显示轴丝明显正常,内臂结构没有明显缺陷。这项研究证明了RNA干扰作为研究动力蛋白重链等非常大的基因的有效方法,这些动力蛋白敲低后的不动性表型表明,完整的内臂对于布氏锥虫的鞭毛搏动是必需的。由于莱茵衣藻中的类似突变体仍具有运动能力,这种表型可能反映了两种生物体在运动和/或动力蛋白组装需求上的差异,这些比较研究将有助于阐明鞭毛搏动调节的机制。

相似文献

1
Silencing of a putative inner arm dynein heavy chain results in flagellar immotility in Trypanosoma brucei.
Mol Biochem Parasitol. 2011 Jan;175(1):68-75. doi: 10.1016/j.molbiopara.2010.09.005. Epub 2010 Oct 1.
2
Knockdown of Inner Arm Protein IC138 in Trypanosoma brucei Causes Defective Motility and Flagellar Detachment.
PLoS One. 2015 Nov 10;10(11):e0139579. doi: 10.1371/journal.pone.0139579. eCollection 2015.
7
Light chain 2 is a Tctex-type related axonemal dynein light chain that regulates directional ciliary motility in Trypanosoma brucei.
PLoS Pathog. 2022 Sep 26;18(9):e1009984. doi: 10.1371/journal.ppat.1009984. eCollection 2022 Sep.
10
Trypanosome doublet microtubule structures reveal flagellum assembly and motility mechanisms.
Science. 2025 Mar 14;387(6739):eadr3314. doi: 10.1126/science.adr3314.

引用本文的文献

1
Trypanosome doublet microtubule structures reveal flagellum assembly and motility mechanisms.
Science. 2025 Mar 14;387(6739):eadr3314. doi: 10.1126/science.adr3314.
2
Genome-scale RNA interference profiling of Trypanosoma brucei cell cycle progression defects.
Nat Commun. 2022 Sep 10;13(1):5326. doi: 10.1038/s41467-022-33109-y.
4
Vertebrate Dynein-f depends on Wdr78 for axonemal localization and is essential for ciliary beat.
J Mol Cell Biol. 2019 May 1;11(5):383-394. doi: 10.1093/jmcb/mjy043.
5
Knockdown of Inner Arm Protein IC138 in Trypanosoma brucei Causes Defective Motility and Flagellar Detachment.
PLoS One. 2015 Nov 10;10(11):e0139579. doi: 10.1371/journal.pone.0139579. eCollection 2015.
7
Cryoelectron tomography reveals doublet-specific structures and unique interactions in the I1 dynein.
Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):E2067-76. doi: 10.1073/pnas.1120690109. Epub 2012 Jun 25.
8
Trypanosoma cruzi gene expression in response to gamma radiation.
PLoS One. 2012;7(1):e29596. doi: 10.1371/journal.pone.0029596. Epub 2012 Jan 11.

本文引用的文献

1
Approaches for functional analysis of flagellar proteins in African trypanosomes.
Methods Cell Biol. 2009;93:21-57. doi: 10.1016/S0091-679X(08)93002-8. Epub 2009 Dec 4.
2
Propulsion of African trypanosomes is driven by bihelical waves with alternating chirality separated by kinks.
Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19322-7. doi: 10.1073/pnas.0907001106. Epub 2009 Oct 30.
3
The Trypanosoma brucei flagellum: moving parasites in new directions.
Annu Rev Microbiol. 2009;63:335-62. doi: 10.1146/annurev.micro.091208.073353.
4
Identification of dyneins that localize exclusively to the proximal portion of Chlamydomonas flagella.
J Cell Sci. 2009 May 1;122(Pt 9):1306-14. doi: 10.1242/jcs.045096. Epub 2009 Apr 7.
6
Molecular architecture of inner dynein arms in situ in Chlamydomonas reinhardtii flagella.
J Cell Biol. 2008 Dec 1;183(5):923-32. doi: 10.1083/jcb.200808050. Epub 2008 Nov 24.
8
The flagellum of Trypanosoma brucei: new tricks from an old dog.
Int J Parasitol. 2008 Jul;38(8-9):869-84. doi: 10.1016/j.ijpara.2008.03.003. Epub 2008 Mar 28.
9
Twenty-five dyneins in Tetrahymena: A re-examination of the multidynein hypothesis.
Cell Motil Cytoskeleton. 2008 Apr;65(4):342-51. doi: 10.1002/cm.20264.
10
The history of African trypanosomiasis.
Parasit Vectors. 2008 Feb 12;1(1):3. doi: 10.1186/1756-3305-1-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验