Ralston Katherine S, Lerner Alana G, Diener Dennis R, Hill Kent L
Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, 609 Charles E. Young Dr., Los Angeles, CA 90095, USA.
Eukaryot Cell. 2006 Apr;5(4):696-711. doi: 10.1128/EC.5.4.696-711.2006.
The flagellum of Trypanosoma brucei is a multifunctional organelle with critical roles in motility and other aspects of the trypanosome life cycle. Trypanin is a flagellar protein required for directional cell motility, but its molecular function is unknown. Recently, a trypanin homologue in Chlamydomonas reinhardtii was reported to be part of a dynein regulatory complex (DRC) that transmits regulatory signals from central pair microtubules and radial spokes to axonemal dynein. DRC genes were identified as extragenic suppressors of central pair and/or radial spoke mutations. We used RNA interference to ablate expression of radial spoke (RSP3) and central pair (PF16) components individually or in combination with trypanin. Both rsp3 and pf16 single knockdown mutants are immotile, with severely defective flagellar beat. In the case of rsp3, this loss of motility is correlated with the loss of radial spokes, while in the case of pf16 the loss of motility correlates with an aberrant orientation of the central pair microtubules within the axoneme. Genetic interaction between trypanin and PF16 is demonstrated by the finding that loss of trypanin suppresses the pf16 beat defect, indicating that the DRC represents an evolutionarily conserved strategy for dynein regulation. Surprisingly, we discovered that four independent mutants with an impaired flagellar beat all fail in the final stage of cytokinesis, indicating that flagellar motility is necessary for normal cell division in T. brucei. These findings present the first evidence that flagellar beating is important for cell division and open the opportunity to exploit enzymatic activities that drive flagellar beat as drug targets for the treatment of African sleeping sickness.
布氏锥虫的鞭毛是一种多功能细胞器,在锥虫的运动及生命周期的其他方面发挥着关键作用。锥鞭蛋白是细胞定向运动所需的一种鞭毛蛋白,但其分子功能尚不清楚。最近,有报道称莱茵衣藻中的一种锥鞭蛋白同源物是动力蛋白调节复合体(DRC)的一部分,该复合体将调节信号从中心微管和辐条传递到轴丝动力蛋白。DRC基因被鉴定为中心微管和/或辐条突变的基因外抑制因子。我们利用RNA干扰分别或与锥鞭蛋白联合敲除辐条(RSP3)和中心微管(PF16)成分的表达。rsp3和pf16单基因敲除突变体均无法运动,鞭毛搏动严重缺陷。就rsp3而言,这种运动能力的丧失与辐条的丧失有关,而对于pf16,运动能力的丧失与轴丝内中心微管的异常取向有关。锥鞭蛋白与PF16之间的遗传相互作用通过以下发现得以证明:锥鞭蛋白的缺失抑制了pf16的搏动缺陷,这表明DRC代表了一种进化上保守的动力蛋白调节策略。令人惊讶的是,我们发现四个鞭毛搏动受损的独立突变体在胞质分裂的最后阶段均失败,这表明鞭毛运动对于布氏锥虫的正常细胞分裂是必需的。这些发现首次证明了鞭毛搏动对细胞分裂很重要,并为利用驱动鞭毛搏动的酶活性作为治疗非洲昏睡病的药物靶点提供了机会。