Suppr超能文献

用最大似然法对结构异质性进行分类。

Classification of structural heterogeneity by maximum-likelihood methods.

作者信息

Scheres Sjors H W

机构信息

MRC Laboratory of Molecular Biology, Hills Road, Cambridge, United Kingdom.

出版信息

Methods Enzymol. 2010;482:295-320. doi: 10.1016/S0076-6879(10)82012-9.

Abstract

With the advent of computationally feasible approaches to maximum-likelihood (ML) image processing for cryo-electron microscopy, these methods have proven particularly useful in the classification of structurally heterogeneous single-particle data. A growing number of experimental studies have applied these algorithms to study macromolecular complexes with a wide range of structural variability, including nonstoichiometric complex formation, large conformational changes, and combinations of both. This chapter aims to share the practical experience that has been gained from the application of these novel approaches. Current insights on how to prepare the data and how to perform two- or three-dimensional classifications are discussed together with the aspects related to high-performance computing. Thereby, this chapter will hopefully be of practical use for those microscopists wishing to apply ML methods in their own investigations.

摘要

随着用于冷冻电子显微镜的最大似然(ML)图像处理的计算可行方法的出现,这些方法已被证明在结构异质单颗粒数据的分类中特别有用。越来越多的实验研究已将这些算法应用于研究具有广泛结构变异性的大分子复合物,包括非化学计量复合物形成、大的构象变化以及两者的组合。本章旨在分享从应用这些新方法中获得的实践经验。讨论了关于如何准备数据以及如何进行二维或三维分类的当前见解,以及与高性能计算相关的方面。因此,本章有望对那些希望在自己的研究中应用ML方法的显微镜学家具有实际用途。

相似文献

1
Classification of structural heterogeneity by maximum-likelihood methods.
Methods Enzymol. 2010;482:295-320. doi: 10.1016/S0076-6879(10)82012-9.
2
Processing of Structurally Heterogeneous Cryo-EM Data in RELION.
Methods Enzymol. 2016;579:125-57. doi: 10.1016/bs.mie.2016.04.012. Epub 2016 May 31.
3
SubspaceEM: A fast maximum-a-posteriori algorithm for cryo-EM single particle reconstruction.
J Struct Biol. 2015 May;190(2):200-14. doi: 10.1016/j.jsb.2015.03.009. Epub 2015 Mar 31.
4
Likelihood-based structural analysis of electron microscopy images.
Curr Opin Struct Biol. 2018 Apr;49:162-168. doi: 10.1016/j.sbi.2018.03.004. Epub 2018 Mar 24.
5
Structural Study of Heterogeneous Biological Samples by Cryoelectron Microscopy and Image Processing.
Biomed Res Int. 2017;2017:1032432. doi: 10.1155/2017/1032432. Epub 2017 Jan 15.
6
Particle migration analysis in iterative classification of cryo-EM single-particle data.
J Struct Biol. 2014 Dec;188(3):267-73. doi: 10.1016/j.jsb.2014.10.006. Epub 2014 Oct 30.
8
Image Processing in Cryo-Electron Microscopy of Single Particles: The Power of Combining Methods.
Methods Mol Biol. 2021;2305:257-289. doi: 10.1007/978-1-0716-1406-8_13.
9
Single-Particle Electron Microscopy Analysis of DNA Repair Complexes.
Methods Enzymol. 2017;592:159-186. doi: 10.1016/bs.mie.2017.03.010. Epub 2017 May 8.
10
An introduction to maximum-likelihood methods in cryo-EM.
Methods Enzymol. 2010;482:263-94. doi: 10.1016/S0076-6879(10)82011-7.

引用本文的文献

1
Structural Biology for Target Identification and Validation.
Methods Mol Biol. 2025;2905:17-49. doi: 10.1007/978-1-0716-4418-8_2.
2
AI-based methods for biomolecular structure modeling for Cryo-EM.
Curr Opin Struct Biol. 2025 Feb;90:102989. doi: 10.1016/j.sbi.2025.102989. Epub 2025 Jan 27.
3
A Representation Theory Perspective on Simultaneous Alignment and Classification.
Appl Comput Harmon Anal. 2020 Nov;49(3):1001-1024. doi: 10.1016/j.acha.2019.05.005. Epub 2019 Jun 5.
5
Insights into protein structure using cryogenic light microscopy.
Biochem Soc Trans. 2023 Dec 20;51(6):2041-2059. doi: 10.1042/BST20221246.
6
Structural Analysis of Protein Complexes by Cryo-Electron Microscopy.
Methods Mol Biol. 2024;2715:431-470. doi: 10.1007/978-1-0716-3445-5_27.
8
Onto Grid Purification and 3D Reconstruction of Protein Complexes Using Matrix-Landing Native Mass Spectrometry.
J Proteome Res. 2023 Mar 3;22(3):851-856. doi: 10.1021/acs.jproteome.2c00595. Epub 2023 Jan 6.
9
Deep generative modeling for volume reconstruction in cryo-electron microscopy.
J Struct Biol. 2022 Dec;214(4):107920. doi: 10.1016/j.jsb.2022.107920. Epub 2022 Nov 8.
10
Probing Structural Perturbation of Biomolecules by Extracting Cryo-EM Data Heterogeneity.
Biomolecules. 2022 Apr 24;12(5):628. doi: 10.3390/biom12050628.

本文引用的文献

1
A toolbox for ab initio 3-D reconstructions in single-particle electron microscopy.
J Struct Biol. 2010 Mar;169(3):389-98. doi: 10.1016/j.jsb.2009.12.005. Epub 2009 Dec 16.
2
3
tmRNA.SmpB complex mimics native aminoacyl-tRNAs in the A site of stalled ribosomes.
J Struct Biol. 2010 Mar;169(3):342-8. doi: 10.1016/j.jsb.2009.10.015. Epub 2009 Oct 31.
4
Exploring conformational modes of macromolecular assemblies by multiparticle cryo-EM.
Curr Opin Struct Biol. 2009 Oct;19(5):623-31. doi: 10.1016/j.sbi.2009.08.001. Epub 2009 Sep 18.
5
Parallel, distributed and GPU computing technologies in single-particle electron microscopy.
Acta Crystallogr D Biol Crystallogr. 2009 Jul;65(Pt 7):659-71. doi: 10.1107/S0907444909011433. Epub 2009 Jun 20.
6
Appion: an integrated, database-driven pipeline to facilitate EM image processing.
J Struct Biol. 2009 Apr;166(1):95-102. doi: 10.1016/j.jsb.2009.01.002.
7
Structure of ratcheted ribosomes with tRNAs in hybrid states.
Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):16924-7. doi: 10.1073/pnas.0809587105. Epub 2008 Oct 29.
8
Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome.
Mol Cell. 2008 Oct 24;32(2):190-7. doi: 10.1016/j.molcel.2008.10.001.
9
Exploiting desktop supercomputing for three-dimensional electron microscopy reconstructions using ART with blobs.
J Struct Biol. 2009 Jan;165(1):19-26. doi: 10.1016/j.jsb.2008.09.009. Epub 2008 Oct 8.
10
The structure of CCT-Hsc70 NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin.
Nat Struct Mol Biol. 2008 Aug;15(8):858-64. doi: 10.1038/nsmb.1464. Epub 2008 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验