Scheres Sjors H W
MRC Laboratory of Molecular Biology, Hills Road, Cambridge, United Kingdom.
Methods Enzymol. 2010;482:295-320. doi: 10.1016/S0076-6879(10)82012-9.
With the advent of computationally feasible approaches to maximum-likelihood (ML) image processing for cryo-electron microscopy, these methods have proven particularly useful in the classification of structurally heterogeneous single-particle data. A growing number of experimental studies have applied these algorithms to study macromolecular complexes with a wide range of structural variability, including nonstoichiometric complex formation, large conformational changes, and combinations of both. This chapter aims to share the practical experience that has been gained from the application of these novel approaches. Current insights on how to prepare the data and how to perform two- or three-dimensional classifications are discussed together with the aspects related to high-performance computing. Thereby, this chapter will hopefully be of practical use for those microscopists wishing to apply ML methods in their own investigations.
随着用于冷冻电子显微镜的最大似然(ML)图像处理的计算可行方法的出现,这些方法已被证明在结构异质单颗粒数据的分类中特别有用。越来越多的实验研究已将这些算法应用于研究具有广泛结构变异性的大分子复合物,包括非化学计量复合物形成、大的构象变化以及两者的组合。本章旨在分享从应用这些新方法中获得的实践经验。讨论了关于如何准备数据以及如何进行二维或三维分类的当前见解,以及与高性能计算相关的方面。因此,本章有望对那些希望在自己的研究中应用ML方法的显微镜学家具有实际用途。