University of Chicago, Department of Statistics, Chicago, IL, USA.
Stanford University, Department of Electrical Engineering, Stanford, CA, USA; LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
J Struct Biol. 2022 Dec;214(4):107920. doi: 10.1016/j.jsb.2022.107920. Epub 2022 Nov 8.
Advances in cryo-electron microscopy (cryo-EM) for high-resolution imaging of biomolecules in solution have provided new challenges and opportunities for algorithm development for 3D reconstruction. Next-generation volume reconstruction algorithms that combine generative modelling with end-to-end unsupervised deep learning techniques have shown promise, but many technical and theoretical hurdles remain, especially when applied to experimental cryo-EM images. In light of the proliferation of such methods, we propose here a critical review of recent advances in the field of deep generative modelling for cryo-EM reconstruction. The present review aims to (i) provide a unified statistical framework using terminology familiar to machine learning researchers with no specific background in cryo-EM, (ii) review the current methods in this framework, and (iii) outline outstanding bottlenecks and avenues for improvements in the field.
冷冻电子显微镜(cryo-EM)技术在溶液中生物分子高分辨率成像方面的进展为 3D 重建的算法开发提供了新的挑战和机遇。结合生成式建模和端到端无监督深度学习技术的下一代体积重建算法显示出了前景,但仍存在许多技术和理论上的障碍,特别是在应用于实验冷冻电子显微镜图像时。鉴于此类方法的大量出现,我们在这里对冷冻电子显微镜重建中深度生成式建模领域的最新进展进行了批判性的回顾。本综述旨在:(i)使用机器学习研究人员熟悉的术语提供一个统一的统计框架,而无需具备冷冻电子显微镜方面的特定背景;(ii)在该框架内回顾当前的方法;(iii)概述该领域的突出瓶颈和改进途径。