Suppr超能文献

基于稀疏非负矩阵分解的盲光谱解混。

Blind spectral unmixing based on sparse nonnegative matrix factorization.

机构信息

School of Electronic and Information Engineering, South China University of Technology, Guangzhou, 510641, China.

出版信息

IEEE Trans Image Process. 2011 Apr;20(4):1112-25. doi: 10.1109/TIP.2010.2081678. Epub 2010 Sep 30.

Abstract

Nonnegative matrix factorization (NMF) is a widely used method for blind spectral unmixing (SU), which aims at obtaining the endmembers and corresponding fractional abundances, knowing only the collected mixing spectral data. It is noted that the abundance may be sparse (i.e., the endmembers may be with sparse distributions) and sparse NMF tends to lead to a unique result, so it is intuitive and meaningful to constrain NMF with sparseness for solving SU. However, due to the abundance sum-to-one constraint in SU, the traditional sparseness measured by L0/L1-norm is not an effective constraint any more. A novel measure (termed as S-measure) of sparseness using higher order norms of the signal vector is proposed in this paper. It features the physical significance. By using the S-measure constraint (SMC), a gradient-based sparse NMF algorithm (termed as NMF-SMC) is proposed for solving the SU problem, where the learning rate is adaptively selected, and the endmembers and abundances are simultaneously estimated. In the proposed NMF-SMC, there is no pure index assumption and no need to know the exact sparseness degree of the abundance in prior. Yet, it does not require the preprocessing of dimension reduction in which some useful information may be lost. Experiments based on synthetic mixtures and real-world images collected by AVIRIS and HYDICE sensors are performed to evaluate the validity of the proposed method.

摘要

非负矩阵分解 (NMF) 是一种广泛应用于盲光谱解混 (SU) 的方法,旨在仅通过收集的混合光谱数据获得端元及其对应的分数丰度。需要注意的是,丰度可能是稀疏的(即端元可能具有稀疏分布),稀疏 NMF 往往会导致唯一的结果,因此,对 NMF 进行稀疏约束以解决 SU 问题是直观且有意义的。然而,由于 SU 中丰度总和为一的约束,传统的 L0/L1 范数测量的稀疏性不再是有效的约束。本文提出了一种使用信号向量更高阶范数的稀疏性新度量(称为 S 度量)。它具有物理意义。通过使用 S 度量约束(SMC),提出了一种基于梯度的稀疏 NMF 算法(称为 NMF-SMC)来解决 SU 问题,其中自适应选择学习率,并同时估计端元和丰度。在提出的 NMF-SMC 中,没有纯索引假设,也不需要事先知道丰度的精确稀疏度。然而,它不需要进行降维预处理,因为这可能会丢失一些有用的信息。基于 AVIRIS 和 HYDICE 传感器采集的合成混合物和真实图像进行实验,以评估所提出方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验