非负矩阵分解去除自发荧光。

Autofluorescence removal by non-negative matrix factorization.

机构信息

Yale University Applied Math, New Haven, CT 06511, USA.

出版信息

IEEE Trans Image Process. 2011 Apr;20(4):1085-93. doi: 10.1109/TIP.2010.2079810. Epub 2010 Sep 30.

Abstract

This paper describes a new, physically interpretable, fully automatic algorithm for removal of tissue autofluorescence (AF) from fluorescence microscopy images, by non-negative matrix factorization. Measurement of signal intensities from the concentration of certain fluorescent reporter molecules at each location within a sample of biological tissue is confounded by fluorescence produced by the tissue itself (autofluorescence). Spectral mixing models use mixing coefficients to specify how much fluorescence from each source is present and unmixing algorithms separate the two fluorescent sources. Current spectral unmixing methods for AF removal often require a priori knowledge of mixing coefficients. Those which do not, such as principal component analysis, generate negative mixing coefficients that are not physically meaningful. Non-negative matrix factorization constrains mixing coefficients to be non-negative, and has been used for spectral unmixing, but not AF removal. This paper describes a novel non-negative matrix factorization algorithm which separates fluorescent images into true signal and AF components utilizing an estimate of the dark current. We also present a test-bed, based on fluorescent beads, to compare the performance of different AF removal algorithms. Our algorithm out-performed previous state of the art on validation images.

摘要

本文描述了一种新的、具有物理可解释性的、完全自动的算法,通过非负矩阵分解从荧光显微镜图像中去除组织自发荧光(AF)。通过在生物组织样本的每个位置测量特定荧光报告分子的浓度的信号强度,受到来自组织本身(自发荧光)产生的荧光的干扰。光谱混合模型使用混合系数来指定每个源的荧光量,解混算法则将两种荧光源分离。目前用于去除 AF 的光谱解混方法通常需要先验的混合系数知识。那些不需要的方法,如主成分分析,会产生没有物理意义的负混合系数。非负矩阵分解将混合系数约束为非负,并已被用于光谱解混,但不适用于 AF 去除。本文描述了一种新颖的非负矩阵分解算法,该算法利用暗电流的估计值将荧光图像分离为真实信号和 AF 分量。我们还提出了一个基于荧光珠的测试平台,用于比较不同 AF 去除算法的性能。我们的算法在验证图像上的性能优于先前的最先进水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索