Department of Pediatric & Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
J Biol Chem. 2010 Dec 3;285(49):38486-501. doi: 10.1074/jbc.M110.145144. Epub 2010 Oct 2.
Friedreich ataxia (FRDA) is an autosomal recessive degenerative disease caused by insufficient expression of frataxin (FXN), a mitochondrial iron-binding protein required for Fe-S cluster assembly. The development of treatments to increase FXN levels in FRDA requires elucidation of the steps involved in the biogenesis of functional FXN. The FXN mRNA is translated to a precursor polypeptide that is transported to the mitochondrial matrix and processed to at least two forms, FXN(42-210) and FXN(81-210). Previous reports suggested that FXN(42-210) is a transient processing intermediate, whereas FXN(81-210) represents the mature protein. However, we find that both FXN(42-210) and FXN(81-210) are present in control cell lines and tissues at steady-state, and that FXN(42-210) is consistently more depleted than FXN(81-210) in samples from FRDA patients. Moreover, FXN(42-210) and FXN(81-210) have strikingly different biochemical properties. A shorter N terminus correlates with monomeric configuration, labile iron binding, and dynamic contacts with components of the Fe-S cluster biosynthetic machinery, i.e. the sulfur donor complex NFS1·ISD11 and the scaffold ISCU. Conversely, a longer N terminus correlates with the ability to oligomerize, store iron, and form stable contacts with NFS1·ISD11 and ISCU. Monomeric FXN(81-210) donates Fe(2+) for Fe-S cluster assembly on ISCU, whereas oligomeric FXN(42-210) donates either Fe(2+) or Fe(3+). These functionally distinct FXN isoforms seem capable to ensure incremental rates of Fe-S cluster synthesis from different mitochondrial iron pools. We suggest that the levels of both isoforms are relevant to FRDA pathophysiology and that the FXN(81-210)/FXN(42-210) molar ratio should provide a useful parameter to optimize FXN augmentation and replacement therapies.
弗里德赖希共济失调(FRDA)是一种常染色体隐性退行性疾病,由铁结合蛋白 frataxin(FXN)表达不足引起,FXN 是一种线粒体铁结合蛋白,对于 Fe-S 簇的组装是必需的。开发增加 FRDA 中 FXN 水平的治疗方法需要阐明参与功能性 FXN 生物发生的步骤。FXN mRNA 被翻译为前体多肽,该前体多肽被转运到线粒体基质中,并加工成至少两种形式,FXN(42-210)和 FXN(81-210)。先前的报告表明,FXN(42-210)是一种短暂的加工中间产物,而 FXN(81-210)代表成熟蛋白。然而,我们发现 FXN(42-210)和 FXN(81-210)在稳定状态下均存在于对照细胞系和组织中,并且在 FRDA 患者的样本中,FXN(42-210)的消耗始终比 FXN(81-210)更为明显。此外,FXN(42-210)和 FXN(81-210)具有明显不同的生化特性。较短的 N 端与单体构型、不稳定的铁结合以及与 Fe-S 簇生物合成机制的成分(即硫供体复合物 NFS1·ISD11 和支架 ISCU)的动态接触相关。相反,较长的 N 端与寡聚化、储存铁以及与 NFS1·ISD11 和 ISCU 形成稳定接触的能力相关。单体 FXN(81-210)将 Fe(2+)捐赠给 ISCU 以用于 Fe-S 簇组装,而寡聚 FXN(42-210)将 Fe(2+)或 Fe(3+)捐赠给 ISCU。这些具有不同功能的 FXN 同工型似乎能够确保从不同的线粒体铁池中以递增的速率合成 Fe-S 簇。我们认为,这两种同工型的水平都与 FRDA 病理生理学有关,并且 FXN(81-210)/FXN(42-210)摩尔比应该为优化 FXN 增加和替代疗法提供有用的参数。