Suppr超能文献

非编码 RNA 检测方法的联合应用以提高可用性、重现性和精度。

Non-coding RNA detection methods combined to improve usability, reproducibility and precision.

机构信息

Systems Biology and Bioinformatics Group, University of Rostock, Rostock, Germany.

出版信息

BMC Bioinformatics. 2010 Sep 29;11:491. doi: 10.1186/1471-2105-11-491.

Abstract

BACKGROUND

Non-coding RNAs gain more attention as their diverse roles in many cellular processes are discovered. At the same time, the need for efficient computational prediction of ncRNAs increases with the pace of sequencing technology. Existing tools are based on various approaches and techniques, but none of them provides a reliable ncRNA detector yet. Consequently, a natural approach is to combine existing tools. Due to a lack of standard input and output formats combination and comparison of existing tools is difficult. Also, for genomic scans they often need to be incorporated in detection workflows using custom scripts, which decreases transparency and reproducibility.

RESULTS

We developed a Java-based framework to integrate existing tools and methods for ncRNA detection. This framework enables users to construct transparent detection workflows and to combine and compare different methods efficiently. We demonstrate the effectiveness of combining detection methods in case studies with the small genomes of Escherichia coli, Listeria monocytogenes and Streptococcus pyogenes. With the combined method, we gained 10% to 20% precision for sensitivities from 30% to 80%. Further, we investigated Streptococcus pyogenes for novel ncRNAs. Using multiple methods--integrated by our framework--we determined four highly probable candidates. We verified all four candidates experimentally using RT-PCR.

CONCLUSIONS

We have created an extensible framework for practical, transparent and reproducible combination and comparison of ncRNA detection methods. We have proven the effectiveness of this approach in tests and by guiding experiments to find new ncRNAs. The software is freely available under the GNU General Public License (GPL), version 3 at http://www.sbi.uni-rostock.de/moses along with source code, screen shots, examples and tutorial material.

摘要

背景

随着非编码 RNA 在许多细胞过程中的多种作用被发现,它们越来越受到关注。与此同时,随着测序技术的发展,对高效计算预测非编码 RNA 的需求也在增加。现有的工具基于各种方法和技术,但没有一个能够提供可靠的非编码 RNA 检测工具。因此,一种自然的方法是结合现有的工具。由于缺乏标准的输入和输出格式,组合和比较现有的工具变得困难。此外,对于基因组扫描,它们通常需要用定制脚本整合到检测工作流程中,这降低了透明度和可重复性。

结果

我们开发了一个基于 Java 的框架,用于整合现有的非编码 RNA 检测工具和方法。该框架使用户能够构建透明的检测工作流程,并有效地组合和比较不同的方法。我们通过对大肠杆菌、单核细胞增生李斯特菌和化脓性链球菌的小基因组进行案例研究,证明了组合检测方法的有效性。通过组合方法,我们在 30%到 80%的灵敏度范围内提高了 10%到 20%的精度。此外,我们还研究了化脓性链球菌的新型非编码 RNA。通过使用多种方法(通过我们的框架集成),我们确定了四个高度可能的候选者。我们使用 RT-PCR 实验验证了所有四个候选者。

结论

我们创建了一个可扩展的框架,用于实用、透明和可重复地组合和比较非编码 RNA 检测方法。我们通过测试和指导实验来寻找新的非编码 RNA,证明了这种方法的有效性。该软件可在 http://www.sbi.uni-rostock.de/moses 上根据 GNU 通用公共许可证(GPL)第 3 版免费获得,包括源代码、屏幕截图、示例和教程材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64fb/2955705/44c2d27389a7/1471-2105-11-491-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验