Center for Bioinformatics Tübingen, University of Tübingen, Sand 14, 72076 Tübingen, Germany.
BMC Bioinformatics. 2011 Jan 31;12:40. doi: 10.1186/1471-2105-12-40.
The interest in non-coding RNAs (ncRNAs) constantly rose during the past few years because of the wide spectrum of biological processes in which they are involved. This led to the discovery of numerous ncRNA genes across many species. However, for most organisms the non-coding transcriptome still remains unexplored to a great extent. Various experimental techniques for the identification of ncRNA transcripts are available, but as these methods are costly and time-consuming, there is a need for computational methods that allow the detection of functional RNAs in complete genomes in order to suggest elements for further experiments. Several programs for the genome-wide prediction of functional RNAs have been developed but most of them predict a genomic locus with no indication whether the element is transcribed or not.
We present NOCORNAc, a program for the genome-wide prediction of ncRNA transcripts in bacteria. NOCORNAc incorporates various procedures for the detection of transcriptional features which are then integrated with functional ncRNA loci to determine the transcript coordinates. We applied RNAz and NOCORNAc to the genome of Streptomyces coelicolor and detected more than 800 putative ncRNA transcripts most of them located antisense to protein-coding regions. Using a custom design microarray we profiled the expression of about 400 of these elements and found more than 300 to be transcribed, 38 of them are predicted novel ncRNA genes in intergenic regions. The expression patterns of many ncRNAs are similarly complex as those of the protein-coding genes, in particular many antisense ncRNAs show a high expression correlation with their protein-coding partner.
We have developed NOCORNAc, a framework that facilitates the automated characterization of functional ncRNAs. NOCORNAc increases the confidence of predicted ncRNA loci, especially if they contain transcribed ncRNAs. NOCORNAc is not restricted to intergenic regions, but it is applicable to the prediction of ncRNA transcripts in whole microbial genomes. The software as well as a user guide and example data is available at http://www.zbit.uni-tuebingen.de/pas/nocornac.htm.
近年来,由于非编码 RNA(ncRNA)参与的广泛生物过程,人们对非编码 RNA 的兴趣不断增加。这导致在许多物种中发现了大量的 ncRNA 基因。然而,对于大多数生物体来说,非编码转录组在很大程度上仍然未被探索。有许多用于鉴定 ncRNA 转录本的实验技术,但由于这些方法昂贵且耗时,因此需要计算方法来检测完整基因组中的功能 RNA,以便为进一步的实验提出要素。已经开发了几种用于全基因组预测功能 RNA 的程序,但它们大多数预测基因组基因座,而没有指示该元素是否被转录。
我们提出了 NOCORNAc,这是一种用于细菌全基因组预测 ncRNA 转录本的程序。NOCORNAc 结合了用于检测转录特征的各种程序,然后将这些程序与功能 ncRNA 基因座集成,以确定转录本坐标。我们将 RNAz 和 NOCORNAc 应用于链霉菌协同素的基因组,并检测到 800 多个假定的 ncRNA 转录本,其中大多数位于蛋白质编码区的反义。使用定制设计的微阵列,我们对这些元素中的约 400 个进行了表达谱分析,发现其中 300 多个被转录,其中 38 个是在基因间区预测的新的 ncRNA 基因。许多 ncRNA 的表达模式与蛋白质编码基因一样复杂,特别是许多反义 ncRNA 与其蛋白质编码伙伴表现出高度的表达相关性。
我们开发了 NOCORNAc,这是一个自动化功能 ncRNA 特征描述的框架。NOCORNAc 增加了预测 ncRNA 基因座的可信度,特别是如果它们包含转录的 ncRNA。NOCORNAc 不仅限于基因间区,而是适用于整个微生物基因组中 ncRNA 转录本的预测。该软件以及用户指南和示例数据可在 http://www.zbit.uni-tuebingen.de/pas/nocornac.htm 上获得。