Suppr超能文献

SNARE 标签允许多模块药物毒素的逐步组装。

SNARE tagging allows stepwise assembly of a multimodular medicinal toxin.

机构信息

Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18197-201. doi: 10.1073/pnas.1007125107. Epub 2010 Oct 4.

Abstract

Generation of supramolecular architectures through controlled linking of suitable building blocks can offer new perspectives to medicine and applied technologies. Current linking strategies often rely on chemical methods that have limitations and cannot take full advantage of the recombinant technologies. Here we used SNARE proteins, namely, syntaxin, SNAP25, and synaptobrevin, which form stable tetrahelical complexes that drive fusion of intracellular membranes, as versatile tags for irreversible linking of recombinant and synthetic functional units. We show that SNARE tagging allows stepwise production of a functional modular medicinal toxin, namely, botulinum neurotoxin type A, commonly known as BOTOX. This toxin consists of three structurally independent units: Receptor-binding domain (Rbd), Translocation domain (Td), and the Light chain (Lc), the last being a proteolytic enzyme. Fusing the receptor-binding domain with synaptobrevin SNARE motif allowed delivery of the active part of botulinum neurotoxin (Lc-Td), tagged with SNAP25, into neurons. Our data show that SNARE-tagged toxin was able to cleave its intraneuronal molecular target and to inhibit release of neurotransmitters. The reassembled toxin provides a safer alternative to existing botulinum neurotoxin and may offer wider use of this popular research and medical tool. Finally, SNARE tagging allowed the Rbd portion of the toxin to be used to deliver quantum dots and other fluorescent markers into neurons, showing versatility of this unique tagging and self-assembly technique. Together, these results demonstrate that the SNARE tetrahelical coiled-coil allows controlled linking of various building blocks into multifunctional assemblies.

摘要

通过控制合适的构建块的连接来生成超分子结构,可以为医学和应用技术提供新的视角。当前的连接策略通常依赖于化学方法,这些方法具有局限性,并且不能充分利用重组技术。在这里,我们使用 SNARE 蛋白,即突触融合蛋白、SNAP25 和突触融合蛋白,它们形成稳定的四螺旋复合物,驱动细胞内膜的融合,作为重组和合成功能单元不可逆连接的通用标签。我们表明,SNARE 标记允许逐步生产功能性模块化医学毒素,即通常称为 BOTOX 的肉毒神经毒素 A 型。这种毒素由三个结构上独立的单元组成:受体结合域(Rbd)、易位域(Td)和轻链(Lc),后者是一种蛋白水解酶。将受体结合域与突触融合蛋白 SNARE 基序融合,允许将肉毒神经毒素的活性部分(Lc-Td)与 SNAP25 标记的突触融合蛋白一起递送到神经元中。我们的数据表明,SNARE 标记的毒素能够切割其神经元内的分子靶标,并抑制神经递质的释放。重新组装的毒素提供了一种更安全的替代现有肉毒神经毒素的方法,并可能为这种广受欢迎的研究和医学工具提供更广泛的用途。最后,SNARE 标记允许毒素的 Rbd 部分用于将量子点和其他荧光标记物递送到神经元中,显示了这种独特的标记和自组装技术的多功能性。总之,这些结果表明,SNARE 四螺旋卷曲螺旋允许将各种构建块控制地连接成多功能组件。

相似文献

1
SNARE tagging allows stepwise assembly of a multimodular medicinal toxin.
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18197-201. doi: 10.1073/pnas.1007125107. Epub 2010 Oct 4.
2
Engineering botulinum neurotoxin domains for activation by toxin light chain.
FEBS J. 2012 Feb;279(3):515-23. doi: 10.1111/j.1742-4658.2011.08444.x. Epub 2011 Dec 23.
3
Binding of Munc18-1 to synaptobrevin and to the SNARE four-helix bundle.
Biochemistry. 2010 Mar 2;49(8):1568-76. doi: 10.1021/bi9021878.
4
The C-terminal transmembrane region of synaptobrevin binds synaptophysin from adult synaptic vesicles.
Eur J Cell Biol. 2005 Apr;84(4):467-75. doi: 10.1016/j.ejcb.2004.11.007.
5
Functionally distinct SNARE motifs of SNAP25 cooperate in SNARE assembly and membrane fusion.
Biophys J. 2025 Feb 18;124(4):637-650. doi: 10.1016/j.bpj.2024.12.034. Epub 2024 Dec 31.
6
Alternate interfaces may mediate homomeric and heteromeric assembly in the transmembrane domains of SNARE proteins.
J Mol Biol. 2006 Mar 17;357(1):184-94. doi: 10.1016/j.jmb.2005.12.060. Epub 2006 Jan 6.
7
A yeast assay probes the interaction between botulinum neurotoxin serotype B and its SNARE substrate.
Proc Natl Acad Sci U S A. 2006 May 2;103(18):6958-63. doi: 10.1073/pnas.0510816103. Epub 2006 Apr 24.
8
A coiled coil trigger site is essential for rapid binding of synaptobrevin to the SNARE acceptor complex.
J Biol Chem. 2010 Jul 9;285(28):21549-59. doi: 10.1074/jbc.M110.105148. Epub 2010 Apr 20.
9
Characterization of SNARE cleavage products generated by formulated botulinum neurotoxin type-a drug products.
Toxins (Basel). 2010 Aug;2(8):2198-212. doi: 10.3390/toxins2082198. Epub 2010 Aug 19.
10
High affinity interaction of syntaxin and SNAP-25 on the plasma membrane is abolished by botulinum toxin E.
J Biol Chem. 2004 Jan 2;279(1):644-51. doi: 10.1074/jbc.M310879200. Epub 2003 Oct 9.

引用本文的文献

1
Probing the properties of PTEN specific botulinum toxin type E mutants.
J Neural Transm (Vienna). 2025 Jan 23. doi: 10.1007/s00702-025-02879-2.
2
Novel therapies for cancer-induced bone pain.
Neurobiol Pain. 2024 Sep 26;16:100167. doi: 10.1016/j.ynpai.2024.100167. eCollection 2024 Jul-Dec.
3
4
Recent Developments in Engineering Non-Paralytic Botulinum Molecules for Therapeutic Applications.
Toxins (Basel). 2024 Apr 3;16(4):175. doi: 10.3390/toxins16040175.
5
New botulinum neurotoxin constructs for treatment of chronic pain.
Life Sci Alliance. 2023 Apr 11;6(6). doi: 10.26508/lsa.202201631. Print 2023 Jun.
6
SNARE Modulators and SNARE Mimetic Peptides.
Biomolecules. 2022 Nov 29;12(12):1779. doi: 10.3390/biom12121779.
7
Engineering Botulinum Neurotoxins for Enhanced Therapeutic Applications and Vaccine Development.
Toxins (Basel). 2020 Dec 22;13(1):1. doi: 10.3390/toxins13010001.
8
Engineering an Effective Human SNAP-23 Cleaving Botulinum Neurotoxin A Variant.
Toxins (Basel). 2020 Dec 18;12(12):804. doi: 10.3390/toxins12120804.
9
Double-Binding Botulinum Molecule with Reduced Muscle Paralysis: Evaluation in In Vitro and In Vivo Models of Migraine.
Neurotherapeutics. 2021 Jan;18(1):556-568. doi: 10.1007/s13311-020-00967-7. Epub 2020 Nov 17.
10
Novel Native and Engineered Botulinum Neurotoxins.
Handb Exp Pharmacol. 2021;263:63-89. doi: 10.1007/164_2020_351.

本文引用的文献

1
Binary polypeptide system for permanent and oriented protein immobilization.
J Nanobiotechnology. 2010 May 12;8:9. doi: 10.1186/1477-3155-8-9.
2
Botulinum neurotoxin: a marvel of protein design.
Annu Rev Biochem. 2010;79:591-617. doi: 10.1146/annurev.biochem.051908.125345.
3
Engineered biological nanofactories trigger quorum sensing response in targeted bacteria.
Nat Nanotechnol. 2010 Mar;5(3):213-7. doi: 10.1038/nnano.2009.457. Epub 2010 Jan 17.
4
Proteomic analysis reveals the role of synaptic vesicle cycling in sustaining the suprachiasmatic circadian clock.
Curr Biol. 2009 Dec 15;19(23):2031-6. doi: 10.1016/j.cub.2009.10.024. Epub 2009 Nov 12.
5
Sphingosine facilitates SNARE complex assembly and activates synaptic vesicle exocytosis.
Neuron. 2009 Jun 11;62(5):683-94. doi: 10.1016/j.neuron.2009.04.024.
6
Self-assembly of DNA into nanoscale three-dimensional shapes.
Nature. 2009 May 21;459(7245):414-8. doi: 10.1038/nature08016.
7
Cell entry strategy of clostridial neurotoxins.
J Neurochem. 2009 Jun;109(6):1584-95. doi: 10.1111/j.1471-4159.2009.06093.x. Epub 2009 Apr 28.
8
Neuro-exocytosis: botulinum toxins as inhibitory probes and versatile therapeutics.
Curr Opin Pharmacol. 2009 Jun;9(3):326-35. doi: 10.1016/j.coph.2009.03.004. Epub 2009 Apr 23.
9
Engineered toxins: new therapeutics.
Toxicon. 2009 Oct;54(5):587-92. doi: 10.1016/j.toxicon.2009.01.037. Epub 2009 Mar 3.
10
Membrane fusion: grappling with SNARE and SM proteins.
Science. 2009 Jan 23;323(5913):474-7. doi: 10.1126/science.1161748.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验