Biosurfaces Unit, CIC BiomaGUNE, Paseo Miramón 182, E-20009 San Sebastián-Donostia, Spain.
Nanotechnology. 2010 Nov 5;21(44):445101. doi: 10.1088/0957-4484/21/44/445101. Epub 2010 Oct 5.
In this work we present a unified method to study the mechanical properties of cells using the atomic force microscope. Stress relaxation and creep compliance measurements permitted us to determine, the relaxation times, the Young moduli and the viscosity of breast cancer cells (MCF-7). The results show that the mechanical behaviour of MCF-7 cells responds to a two-layered model of similar elasticity but differing viscosity. Treatment of MCF-7 cells with an actin-depolymerising agent results in an overall decrease in both cell elasticity and viscosity, however to a different extent for each layer. The layer that undergoes the smaller decrease (36-38%) is assigned to the cell membrane/cortex while the layer that experiences the larger decrease (70-80%) is attributed to the cell cytoplasm. The combination of the method presented in this work, together with the approach based on stress relaxation microscopy (Moreno-Flores et al 2010 J. Biomech. 43 349-54), constitutes a unique AFM-based experimental framework to study cell mechanics. This methodology can also be extended to study the mechanical properties of biomaterials in general.
在这项工作中,我们提出了一种使用原子力显微镜研究细胞力学性能的统一方法。应力松弛和蠕变测量使我们能够确定乳腺癌细胞(MCF-7)的松弛时间、杨氏模量和粘度。结果表明,MCF-7 细胞的力学行为响应于具有相似弹性但不同粘度的两层模型。用肌动蛋白解聚剂处理 MCF-7 细胞会导致细胞弹性和粘度整体下降,但每个层的下降程度不同。经历较小下降(36-38%)的层被分配到细胞膜/皮质,而经历较大下降(70-80%)的层归因于细胞质。本工作中提出的方法与基于应力松弛显微镜的方法(Moreno-Flores 等人,2010 年,《生物力学杂志》,第 43 卷,第 349-54 页)相结合,构成了一种独特的基于 AFM 的实验框架,用于研究细胞力学。该方法也可以扩展到一般生物材料力学性能的研究。