Suppr超能文献

微生物生长:水分活度和细胞区室粘弹性的作用

Microbial Growth: Role of Water Activity and Viscoelasticity of the Cell Compartments.

作者信息

Schiraldi Alberto

机构信息

Formerly at Department of Food Environmental Nutrition Sciences (DeFENS), University of Milan, 20133 Milan, Italy.

出版信息

Int J Mol Sci. 2025 Sep 1;26(17):8508. doi: 10.3390/ijms26178508.

Abstract

The complexity of the biochemistry and the variety of possible environments make the subject of the no-growth limits of bacteria a very tough challenge. This present work addresses the problem of applying to the microbial cultures the polymer science approach, which is widespread in food technology. This requires the definition of a "dynamic state diagram" that reports the expected trends of the glass transition of two virtual polymers, which mimic the crowded cytoplasmic polymers and the polymeric meshwork of the cell envelope, respectively, versus the water content. At any given temperature, the water content at the glass transition represents the lowest limit for the relevant molecular mobility. This representation leads one to recognize that the lowest temperature to observe microbial growth coincides with that of the largest freeze-concentrated liquid phase, in line with the values predicted by the Ratkowsky empirical equation. In view of potential applications in predictive microbiology, this paper suggests an alternative interpretation for the highest tolerated temperature and the temperature of the largest specific growth rate.

摘要

生物化学的复杂性以及各种可能的环境使得细菌无生长极限这一课题成为一项极具挑战性的难题。本研究致力于解决将聚合物科学方法应用于微生物培养的问题,该方法在食品技术领域广泛应用。这需要定义一个“动态状态图”,该图展示了两种虚拟聚合物玻璃化转变的预期趋势,这两种虚拟聚合物分别模拟了拥挤的细胞质聚合物和细胞包膜的聚合物网络,与水分含量的关系。在任何给定温度下,玻璃化转变时的水分含量代表了相关分子流动性的最低限度。这种表述使人们认识到,观察到微生物生长的最低温度与最大冷冻浓缩液相的温度一致,这与拉特科夫斯基经验方程预测的值相符。鉴于在预测微生物学中的潜在应用,本文对最高耐受温度和最大比生长速率温度提出了一种替代性解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8651/12429614/2714bb6c54d8/ijms-26-08508-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验