Laboratoire de Physique de la Matière Condensée (LPMC), CNRS UMR 7336, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France.
Micron. 2013 Jan;44:287-97. doi: 10.1016/j.micron.2012.07.006. Epub 2012 Aug 7.
The determination of the viscoelastic properties of cells by atomic force microscopy (AFM) is mainly realized by looking at the relaxation of the force when a constant position of the AFM head is maintained or at the evolution of the indentation when a constant force is maintained. In both cases the analysis rests on the hypothesis that the motion of the probe before the relaxation step is realized in a time which is much smaller than the characteristic relaxation time of the material. In this paper we carry out a more general analysis of the probe motion which contains both the indentation and relaxation steps, allowing a better determination of the rheological parameters. This analysis contains a correction of the Hertz model for large indentation and also the correction due to the finite thickness of the biological material; it can be applied to determine the parameters representing any kind of linear viscoelastic model. This approach is then used to model the rheological behavior of one kind of cancer cell called Hep-G2. For this kind of cell, a power law model does not well describe the low and high frequency modulus contrary to a generalized Maxwell model.
原子力显微镜(AFM)通过观察保持 AFM 头部恒定位时的力松弛或保持恒力时的压痕演化,来确定细胞的粘弹性性质。在这两种情况下,分析都基于探针在松弛步骤之前的运动是在比材料的特征松弛时间小得多的时间内实现的假设。在本文中,我们对探针运动进行了更一般的分析,其中包含压痕和松弛步骤,从而可以更好地确定流变学参数。该分析包含了对大压痕的 Hertz 模型的修正,以及对生物材料有限厚度的修正;它可用于确定代表任何类型线性粘弹性模型的参数。然后,该方法用于模拟一种称为 Hep-G2 的癌细胞的流变行为。对于这种细胞,幂律模型不能很好地描述低频和高频模量,而广义 Maxwell 模型可以。