Suppr超能文献

使用回归统计来表征知觉学习:一种知觉校准指数的发展

Characterizing perceptual learning using regression statistics: development of a perceptual calibration index.

作者信息

Cabe Patrick A, Wagman Jeffrey B

机构信息

University of North Carolina, Pembroke, USA.

出版信息

Am J Psychol. 2010 Fall;123(3):253-67. doi: 10.5406/amerjpsyc.123.3.0253.

Abstract

Perceptual learning, improvement in perceptual skill with practice, can improve both accuracy and consistency of perceptual reports. Regression statistics can quantify ongoing calibration of perceptible scalar properties (i.e., improvements in accuracy and consistency) because, ideally, actual and perceived values are linearly related. Changes in variance accounted for (r2) track changes in consistency, and changes in both slope and intercept track changes in accuracy. Conjoint changes in all three regression statistics, obscured in separate plots, can be seen simultaneously in a perceptual calibration state space diagram, with the regression statistics as axes, in which an attractor (r2 = 1.00, slope = 1.00, intercept = 0.00) represents optimal performance. Decreases in the distance between the attractor and successive points in the state space, each representing perceptual performance, quantify perceptual learning; that distance is a perceptual calibration index. To show the utility of the perceptual calibration index, we illustrate its use in an experiment on wielding hand-held objects.

摘要

知觉学习,即通过练习提高知觉技能,能够提升知觉报告的准确性和一致性。回归统计可以量化可感知标量属性的持续校准(即准确性和一致性的提高),因为在理想情况下,实际值和感知值呈线性相关。方差解释率(r2)的变化跟踪一致性的变化,斜率和截距的变化跟踪准确性的变化。在单独的图表中难以看出的这三种回归统计量的联合变化,在以回归统计量为轴的知觉校准状态空间图中可以同时看到,其中一个吸引子(r2 = 1.00,斜率 = 1.00,截距 = 0.00)代表最佳表现。状态空间中吸引子与代表知觉表现的连续点之间距离的减小量化了知觉学习;该距离就是一个知觉校准指标。为了展示知觉校准指标的效用,我们在一个关于手持物体操作的实验中说明了它的用法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验