Suppr超能文献

D-核糖-5-磷酸向 D-木酮糖-5-磷酸的转化:人 RPE 结构和生化研究的新见解。

Conversion of D-ribulose 5-phosphate to D-xylulose 5-phosphate: new insights from structural and biochemical studies on human RPE.

机构信息

National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.

出版信息

FASEB J. 2011 Feb;25(2):497-504. doi: 10.1096/fj.10-171207. Epub 2010 Oct 5.

Abstract

The pentose phosphate pathway (PPP) confers protection against oxidative stress by supplying NADPH necessary for the regeneration of glutathione, which detoxifies H(2)O(2) into H(2)O and O(2). RPE functions in the PPP, catalyzing the reversible conversion of D-ribulose 5-phosphate to D-xylulose 5-phosphate and is an important enzyme for cellular response against oxidative stress. Here, using structural, biochemical, and functional studies, we show that human D-ribulose 5-phosphate 3-epimerase (hRPE) uses Fe(2+) for catalysis. Structures of the binary complexes of hRPE with D-ribulose 5-phosphate and D-xylulose 5-phosphate provide the first detailed molecular insights into the binding mode of physiological ligands and reveal an octahedrally coordinated Fe(2+) ion buried deep inside the active site. Human RPE folds into a typical (β/α)(8) triosephosphate isomerase (TIM) barrel with a loop regulating access to the active site. Two aspartic acids are well positioned to carry out the proton transfers in an acid-base type of reaction mechanism. Interestingly, mutating Ser-10 to alanine almost abolished the enzymatic activity, while L12A and M72A mutations resulted in an almost 50% decrease in the activity. The binary complexes of hRPE reported here will aid in the design of small molecules for modulating the activity of the enzyme and altering flux through the PPP.

摘要

戊糖磷酸途径 (PPP) 通过提供还原型烟酰胺腺嘌呤二核苷酸磷酸 (NADPH) 来保护细胞免受氧化应激,NADPH 是谷胱甘肽再生所必需的,谷胱甘肽可以将 H(2)O(2) 转化为 H(2)O 和 O(2) 来解毒。RPE 在 PPP 中发挥作用,催化 D-核糖 5-磷酸可逆转化为 D-木酮糖 5-磷酸,是细胞应对氧化应激的重要酶。在这里,我们使用结构、生化和功能研究表明,人 D-核糖 5-磷酸 3-差向异构酶 (hRPE) 使用 Fe(2+) 进行催化。hRPE 与 D-核糖 5-磷酸和 D-木酮糖 5-磷酸的二元复合物结构提供了对生理配体结合模式的第一个详细分子见解,并揭示了深埋在活性部位内的八面体配位的 Fe(2+) 离子。人 RPE 折叠成典型的 (β/α)(8) 磷酸丙糖异构酶 (TIM) 桶,其中一个环调节进入活性部位的通道。两个天冬氨酸的位置非常适合进行酸碱类型反应机制中的质子转移。有趣的是,将丝氨酸 10 突变为丙氨酸几乎完全消除了酶活性,而 L12A 和 M72A 突变导致活性降低近 50%。这里报道的 hRPE 二元复合物将有助于设计小分子来调节酶的活性并改变 PPP 中的通量。

相似文献

引用本文的文献

3
Why is manganese so valuable to bacterial pathogens?为什么锰对细菌病原体如此有价值?
Front Cell Infect Microbiol. 2023 Feb 3;13:943390. doi: 10.3389/fcimb.2023.943390. eCollection 2023.
10
CSGID Solves Structures and Identifies Phenotypes for Five Enzymes in .CSGID 解决了. 中五种酶的结构和表型鉴定问题。
Front Cell Infect Microbiol. 2018 Oct 5;8:352. doi: 10.3389/fcimb.2018.00352. eCollection 2018.

本文引用的文献

2
Phaser crystallographic software.相位结晶学软件。
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
6
OASIS and molecular-replacement model completion.绿洲(OASIS)与分子置换模型完善
Acta Crystallogr D Biol Crystallogr. 2007 Jul;63(Pt 7):793-9. doi: 10.1107/S0907444907023451. Epub 2007 Jun 15.
7
MolProbity: all-atom contacts and structure validation for proteins and nucleic acids.MolProbity:蛋白质和核酸的全原子接触与结构验证
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W375-83. doi: 10.1093/nar/gkm216. Epub 2007 Apr 22.
10
Complex cellular responses to reactive oxygen species.细胞对活性氧的复杂反应
Trends Cell Biol. 2005 Jun;15(6):319-26. doi: 10.1016/j.tcb.2005.04.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验