Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA.
Biostatistics. 2011 Apr;12(2):211-22. doi: 10.1093/biostatistics/kxq063. Epub 2010 Oct 5.
Genetic mutations may interact to increase the risk of human complex diseases. Mapping of multiple interacting disease loci in the human genome has recently shown promise in detecting genes with little main effects. The power of interaction association mapping, however, can be greatly influenced by the set of single nucleotide polymorphism (SNP) genotyped in a case-control study. Previous imputation methods only focus on imputation of individual SNPs without considering their joint distribution of possible interactions. We present a new method that simultaneously detects multilocus interaction associations and imputes missing SNPs from a full Bayesian model. Our method treats both the case-control sample and the reference data as random observations. The output of our method is the posterior probabilities of SNPs for their marginal and interacting associations with the disease. Using simulations, we show that the method produces accurate and robust imputation with little overfitting problems. We further show that, with the type I error rate maintained at a common level, SNP imputation can consistently and sometimes substantially improve the power of detecting disease interaction associations. We use a data set of inflammatory bowel disease to demonstrate the application of our method.
遗传突变可能相互作用,增加人类复杂疾病的风险。最近,在人类基因组中对多个相互作用的疾病位点进行定位,显示出在检测具有较小主要效应的基因方面具有潜力。然而,相互作用关联映射的功效可能会受到病例对照研究中基因分型的单核苷酸多态性(SNP)集合的极大影响。以前的插补方法仅关注单个 SNP 的插补,而不考虑它们可能相互作用的联合分布。我们提出了一种新的方法,该方法从全贝叶斯模型中同时检测多基因座相互作用关联并插补缺失的 SNP。我们的方法将病例对照样本和参考数据都视为随机观测值。我们方法的输出是 SNP 与疾病的边缘和相互作用关联的后验概率。通过模拟,我们表明该方法具有准确和稳健的插补,很少出现过拟合问题。我们进一步表明,在保持常见水平的Ⅰ型错误率的情况下,SNP 插补可以一致且有时大幅提高检测疾病相互作用关联的功效。我们使用炎症性肠病数据集来说明我们方法的应用。