Suppr超能文献

检测互作基因座方法的比较分析。

Comparative analysis of methods for detecting interacting loci.

机构信息

Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, USA.

出版信息

BMC Genomics. 2011 Jul 5;12:344. doi: 10.1186/1471-2164-12-344.

Abstract

BACKGROUND

Interactions among genetic loci are believed to play an important role in disease risk. While many methods have been proposed for detecting such interactions, their relative performance remains largely unclear, mainly because different data sources, detection performance criteria, and experimental protocols were used in the papers introducing these methods and in subsequent studies. Moreover, there have been very few studies strictly focused on comparison of existing methods. Given the importance of detecting gene-gene and gene-environment interactions, a rigorous, comprehensive comparison of performance and limitations of available interaction detection methods is warranted.

RESULTS

We report a comparison of eight representative methods, of which seven were specifically designed to detect interactions among single nucleotide polymorphisms (SNPs), with the last a popular main-effect testing method used as a baseline for performance evaluation. The selected methods, multifactor dimensionality reduction (MDR), full interaction model (FIM), information gain (IG), Bayesian epistasis association mapping (BEAM), SNP harvester (SH), maximum entropy conditional probability modeling (MECPM), logistic regression with an interaction term (LRIT), and logistic regression (LR) were compared on a large number of simulated data sets, each, consistent with complex disease models, embedding multiple sets of interacting SNPs, under different interaction models. The assessment criteria included several relevant detection power measures, family-wise type I error rate, and computational complexity. There are several important results from this study. First, while some SNPs in interactions with strong effects are successfully detected, most of the methods miss many interacting SNPs at an acceptable rate of false positives. In this study, the best-performing method was MECPM. Second, the statistical significance assessment criteria, used by some of the methods to control the type I error rate, are quite conservative, thereby limiting their power and making it difficult to fairly compare them. Third, as expected, power varies for different models and as a function of penetrance, minor allele frequency, linkage disequilibrium and marginal effects. Fourth, the analytical relationships between power and these factors are derived, aiding in the interpretation of the study results. Fifth, for these methods the magnitude of the main effect influences the power of the tests. Sixth, most methods can detect some ground-truth SNPs but have modest power to detect the whole set of interacting SNPs.

CONCLUSION

This comparison study provides new insights into the strengths and limitations of current methods for detecting interacting loci. This study, along with freely available simulation tools we provide, should help support development of improved methods. The simulation tools are available at: http://code.google.com/p/simulation-tool-bmc-ms9169818735220977/downloads/list.

摘要

背景

遗传基因座之间的相互作用被认为在疾病风险中起着重要作用。虽然已经提出了许多用于检测这种相互作用的方法,但它们的相对性能仍然很大程度上不清楚,主要是因为在介绍这些方法的论文和随后的研究中使用了不同的数据来源、检测性能标准和实验方案。此外,几乎没有严格专注于比较现有方法的研究。鉴于检测基因-基因和基因-环境相互作用的重要性,需要严格、全面地比较现有交互检测方法的性能和局限性。

结果

我们报告了对八种有代表性的方法的比较,其中七种方法专门设计用于检测单核苷酸多态性 (SNP) 之间的相互作用,最后一种是常用的主要效应测试方法,用作性能评估的基准。所选方法包括多因素维度缩减 (MDR)、全相互作用模型 (FIM)、信息增益 (IG)、贝叶斯关联映射 (BEAM)、SNP 收割机 (SH)、最大熵条件概率建模 (MECPM)、具有交互项的逻辑回归 (LRIT) 和逻辑回归 (LR),在大量模拟数据集上进行了比较,每个数据集都符合复杂疾病模型,在不同的相互作用模型下嵌入多组相互作用的 SNP。评估标准包括几个相关的检测能力度量、总体类型 I 错误率和计算复杂性。本研究有几个重要结果。首先,虽然一些具有强烈影响的相互作用中的 SNP 成功地被检测到,但大多数方法在可接受的假阳性率下错过了许多相互作用的 SNP。在这项研究中,表现最好的方法是 MECPM。其次,一些方法用于控制类型 I 错误率的统计显著性评估标准相当保守,从而限制了它们的能力,使其难以公平地进行比较。第三,正如预期的那样,功效因模型和穿透性、次要等位基因频率、连锁不平衡和边缘效应而异。第四,推导了功效与这些因素之间的分析关系,有助于解释研究结果。第五,对于这些方法,主要效应的大小会影响测试的功效。第六,大多数方法可以检测一些真实 SNP,但检测整个相互作用 SNP 集的能力有限。

结论

这项比较研究为当前检测相互作用基因座的方法的优势和局限性提供了新的见解。本研究以及我们提供的免费模拟工具应该有助于支持改进方法的开发。模拟工具可在以下网址获得:http://code.google.com/p/simulation-tool-bmc-ms9169818735220977/downloads/list。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48d9/3161015/985977f73c3b/1471-2164-12-344-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验