Departamento de Química Física, Universidad de Murcia, Murcia 30100, Spain.
J Chem Phys. 2010 Jun 14;132(22):224501. doi: 10.1063/1.3435212.
A nonequilibrium molecular dynamics (MD) study of the vibrational relaxation of the amide I mode of deuterated N-methylacetamide (NMAD) in aqueous (D(2)O) solution is carried out using instantaneous normal modes (INMs). The identification of the INMs as they evolve over time, which is necessary to analyze the energy fluxes, is made by using a novel algorithm which allows us to assign unequivocally each INM to an individual equilibrium normal mode (ENM) or to a group of ENMs during the MD simulations. The time evolution of the energy stored in each INM is monitored and the occurrence of resonances during the relaxation process is then investigated. The decay of the amide I mode, initially excited with one vibrational quantum, is confirmed to fit well to a biexponential function, implying that the relaxation process involves at least two mechanisms with different rate constants. By freezing the internal motions of the solvent, it is shown that the intermolecular vibration-vibration channel to the bending modes of the solvent is closed. The INM analysis reveals then the existence of a major and faster decay channel, which corresponds to an intramolecular vibrational redistribution process and a minor, and slower, decay channel which involves the participation of the librational motions of the solvent. The faster relaxation pathway can be rationalized in turn using a sequential kinetic mechanism of the type P-->M+L-->L, where P (parent) is the initially excited amide I mode, and M (medium) and L (low) are specific midrange and lower-frequency NMAD vibrational modes, respectively.
采用瞬时模态(INMs)对氘代 N-甲基乙酰胺(NMAD)在水(D2O)溶液中酰胺 I 模式的振动弛豫进行了非平衡分子动力学(MD)研究。通过使用一种新算法来识别随时间演变的 INMs,这对于分析能量通量是必要的,该算法允许我们在 MD 模拟期间将每个 INM 明确地分配给单个平衡模态(ENM)或一组 ENM。监测每个 INM 中存储的能量的时间演化,然后研究弛豫过程中共振的发生。最初用一个振动量子激发的酰胺 I 模式的衰减被证实很好地符合双指数函数,这意味着弛豫过程涉及至少两种具有不同速率常数的机制。通过冻结溶剂的内部运动,表明了分子间振动-振动到溶剂弯曲模式的通道被关闭。然后,INM 分析揭示了存在一个主要的和更快的衰减通道,这对应于一个分子内振动再分配过程,以及一个较小的和较慢的衰减通道,涉及溶剂的摆动运动的参与。更快的弛豫途径可以通过 P->M+L->L 的顺序动力学机制来合理化,其中 P(母体)是最初激发的酰胺 I 模式,M(介质)和 L(低)分别是特定的中程和更低频率的 NMAD 振动模式。