Department of Chemistry, Korea University, Seoul 136-701, South KoreaMultidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713, South Korea.
J Chem Phys. 2011 Dec 7;135(21):214504. doi: 10.1063/1.3658876.
The vibrational energy transfer from the excited carbonyl stretch mode in N-deuterated N-methylacetamide (NMA-d), both in isolation and in a heavy water cluster, is studied with nonequilibrium molecular dynamics (NEMD) simulations, employing a quantum mechanical/molecular mechanical (QM∕MM) force field at the semiempirical PM3 level. The nonequilibrium ensemble of vibrationally excited NMA-d is prepared by perturbing the positions and velocities of the carbonyl C and O atoms and its NEMD trajectories are obtained with a leap-frog algorithm properly modified for the initial perturbation. In addition to the time-domain analysis of the kinetic and potential energies, a novel method for the spectral analysis of the atomic kinetic energies is developed, in terms of the spectral density of kinetic energy, which provides the time-dependent changes of the frequency-resolved kinetic energies without the complications of normal mode analysis at every MD time step. Due to the QM description of the solute electronic structure, the couplings among the normal modes are captured more realistically than with classical force fields. The energy transfer in the isolated NMA-d is found to proceed first from the carbonyl bond to other modes with time scales of 3 ps or less, and then among the other modes over 3-21 ps. In the solvated NMA-d, most of the excess energy is first transferred to other intramolecular modes within 5 ps, which is subsequently dissipated to solvent with 7-19 ps time scales. The contribution of the direct energy transfer from the carbonyl bond to solvent was only 5% with ~7 ps time scale. Solvent reorganization that leads to destabilization of the electrostatic interactions is found to be crucial in the long time relaxation of the excess energy, while the water intramolecular modes do not contribute significantly. Detailed mode-specific energy transfer pathways are deduced for the isolated and solvated NMA-d and they show that the energy transfer in NMA-d is a highly cooperative process among the intramolecular modes and there is no single dominant pathway with more than 30% of transient contribution.
采用半经验 PM3 水平的量子力学/分子力学(QM∕MM)力场,通过非平衡分子动力学(NEMD)模拟研究了激发的羰基伸缩模式在 N-去氘化 N-甲基乙酰胺(NMA-d)中的振动能量转移,无论是在孤立状态还是在重水团簇中。通过扰动羰基 C 和 O 原子的位置和速度,制备了振动激发的 NMA-d 的非平衡系综,并采用适当修改的蛙跳算法获得其 NEMD 轨迹。除了对动能和势能的时域分析外,还开发了一种新颖的原子动能谱分析方法,即基于动能谱密度的方法,该方法提供了频率分辨动能的时变变化,而无需在每个 MD 时间步进行模态分析的复杂性。由于溶质电子结构的 QM 描述,与经典力场相比,正常模式之间的耦合更真实地被捕捉到。在孤立的 NMA-d 中,能量转移首先从羰基键转移到其他模式,时间尺度为 3 ps 或更短,然后在其他模式之间转移超过 3-21 ps。在溶剂化的 NMA-d 中,大部分多余的能量首先在 5 ps 内转移到其他分子内模式,随后在 7-19 ps 的时间尺度内耗散到溶剂中。羰基键直接向溶剂转移的贡献仅为 5%,时间尺度约为 7 ps。发现导致静电相互作用失稳的溶剂重排对于多余能量的长时间弛豫至关重要,而水分子内模式并没有做出重大贡献。推断出孤立和溶剂化的 NMA-d 的特定模式的能量转移途径,它们表明 NMA-d 中的能量转移是分子内模式之间的高度协同过程,没有一个单一的主导途径具有超过 30%的瞬态贡献。