Suppr超能文献

古菌 RNase P 对模型底物的切割:蛋白质辅因子在切割位点选择中的作用。

Cleavage of model substrates by archaeal RNase P: role of protein cofactors in cleavage-site selection.

机构信息

Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University SE-751 24, Uppsala, Sweden.

出版信息

Nucleic Acids Res. 2011 Feb;39(3):1105-16. doi: 10.1093/nar/gkq732. Epub 2010 Oct 8.

Abstract

RNase P is a catalytic ribonucleoprotein primarily involved in tRNA biogenesis. Archaeal RNase P comprises a catalytic RNase P RNA (RPR) and at least four protein cofactors (RPPs), which function as two binary complexes (POP5•RPP30 and RPP21• RPP29). Exploiting the ability to assemble a functional Pyrococcus furiosus (Pfu) RNase P in vitro, we examined the role of RPPs in influencing substrate recognition by the RPR. We first demonstrate that Pfu RPR, like its bacterial and eukaryal counterparts, cleaves model hairpin loop substrates albeit at rates 90- to 200-fold lower when compared with cleavage by bacterial RPR, highlighting the functionally comparable catalytic cores in bacterial and archaeal RPRs. By investigating cleavage-site selection exhibited by Pfu RPR (±RPPs) with various model substrates missing consensus-recognition elements, we determined substrate features whose recognition is facilitated by either POP5•RPP30 or RPP21•RPP29 (directly or indirectly via the RPR). Our results also revealed that Pfu RPR + RPP21•RPP29 displays substrate-recognition properties coinciding with those of the bacterial RPR-alone reaction rather than the Pfu RPR, and that this behaviour is attributable to structural differences in the substrate-specificity domains of bacterial and archaeal RPRs. Moreover, our data reveal a hierarchy in recognition elements that dictates cleavage-site selection by archaeal RNase P.

摘要

RNase P 是一种主要参与 tRNA 生物发生的催化核蛋白。古菌 RNase P 由催化性 RNase P RNA(RPR)和至少四个蛋白辅因子(RPPs)组成,其作为两个二元复合物(POP5•RPP30 和 RPP21•RPP29)发挥作用。利用在体外组装具有功能的 Pyrococcus furiosus(Pfu)RNase P 的能力,我们研究了 RPPs 在影响 RPR 对底物识别中的作用。我们首先证明 Pfu RPR 与细菌和真核生物的对应物一样,尽管与细菌 RPR 的切割速率相比低 90-200 倍,但仍能切割模型发夹环底物,这突出了细菌和古菌 RPR 中具有功能可比的催化核心。通过研究 Pfu RPR(±RPPs)与各种缺少共识识别元件的模型底物的切割位点选择,我们确定了识别受 POP5•RPP30 或 RPP21•RPP29 (直接或间接通过 RPR)促进的底物特征。我们的结果还表明,Pfu RPR+RPP21•RPP29 显示出与细菌 RPR-单独反应而非 Pfu RPR 相符的底物识别特性,并且这种行为归因于细菌和古菌 RPR 中底物特异性结构域的结构差异。此外,我们的数据揭示了决定古菌 RNase P 切割位点选择的识别元件层次结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b139/3035440/0a12bd0b6360/gkq732f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验